On some quasilinear equations involving the p-Laplacian with Robin boundary conditions

被引:3
作者
Duchateau, Xavier [1 ]
机构
[1] Univ Cergy Pontoise, CNRS UMR 8088, Dept Math, F-95302 Cergy Pontoise, France
关键词
p-Laplacian; Robin boundary conditions; critical Sobolev exponent; 35J60; 35D30; QUASILINEAR ELLIPTIC-EQUATIONS; EIGENVALUES; EXISTENCE;
D O I
10.1080/00036811.2011.609815
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let O???R N be a smooth-bounded domain, let f and g be continuous functions on , g???0. Let a?>?0 be some real number and let p???(1, N?) and q???(p, p*] be two real numbers, where p*?=?np/(n?-?p). We are interested in proving the results of existence and non-existence for the non-negative solution of the equationWe consider the case ??<??1 (coercive case) and the case ?????1, where ?1 is the principal eigenvalue for the operator ? p ?+?g with Robin boundary conditions from which we recall the definition and some properties.
引用
收藏
页码:270 / 307
页数:38
相关论文
共 19 条
[1]   ON SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE NONLINEARITIES [J].
ALAMA, S ;
TARANTELLO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (04) :439-475
[2]   Principal eigenvalues and sturm comparison via Picone's identity [J].
Allegretto, W ;
Huang, YX .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (02) :427-438
[3]  
[Anonymous], 1995, REND SEM MAT UNIV P
[4]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[5]  
[Anonymous], 2007, ESPACES FONCTIONNELS
[6]   Existence of solutions for semi-linear equations involving the p-Laplacian:: the non coercive case [J].
Birindelli, I ;
Demengel, F .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (04) :343-366
[7]  
Birindelli I., 2002, Differ Integral Equ, V15, P823
[8]   An alternative approach to the Faber-Krahn inequality for Robin problems [J].
Bucur, Dorin ;
Daners, Daniel .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (1-2) :75-86
[9]  
Demengel F., 1999, ESAIM. Control, Optimisation and Calculus of Variations, V4, P667, DOI 10.1051/cocv:1999126
[10]  
Demengel F, 2005, ASYMPTOTIC ANAL, V43, P287