On Nash-Cournot oligopolistic market equilibrium models with concave cost functions

被引:37
作者
Muu, Le D. [1 ]
Nguyen, V. H. [2 ]
Quy, N. V. [3 ]
机构
[1] Inst Math, Hanoi 10137, Vietnam
[2] FUNDP Unite Optimisat, Dept Math, Namur, Belgium
[3] Financial & Accounting Inst, Hanoi 10137, Vietnam
关键词
nonconvex Nash-Cournot model; equilibrium; concave cost; variational inequality; existence of solution; algorithm;
D O I
10.1007/s10898-007-9243-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider Nash-Cournot oligopolistic market equilibrium models with concave cost functions. Concavity implies, in general, that a local equilibrium point is not necessarily a global one. We give conditions for existence of global equilibrium points. We then propose an algorithm for finding a global equilibrium point or for detecting that the problem is unsolvable. Numerical experiments on some randomly generated data show efficiency of the proposed algorithm.
引用
收藏
页码:351 / 364
页数:14
相关论文
共 26 条
[1]   Using the banach contraction principle to implement the proximal point method for multivalued monotone variational inequalities [J].
Anh, P ;
Muu, LD ;
Nguyen, VH ;
Strodiot, JJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 124 (02) :285-306
[2]  
Anh PN, 2005, NONCON OPTIM ITS APP, V77, P89
[3]  
[Anonymous], 2002, FINITE DIMENSIONAL V
[4]  
Aubin J.-P., 1984, Differential Inclusions
[5]  
BERGE C, 1968, TOPOLOGICAL SPACES
[6]  
Blum E., 1994, MATH STUD, V63, P127
[7]   AUXILIARY PROBLEM PRINCIPLE EXTENDED TO VARIATIONAL-INEQUALITIES [J].
COHEN, G .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 59 (02) :325-333
[8]   EXCHANGE PRICE EQUILIBRIA AND VARIATIONAL-INEQUALITIES [J].
DAFERMOS, S .
MATHEMATICAL PROGRAMMING, 1990, 46 (03) :391-402
[9]  
Dafermosm S., 1997, REG SCI URBAN ECON, V17, P225
[10]   EQUIVALENT DIFFERENTIABLE OPTIMIZATION PROBLEMS AND DESCENT METHODS FOR ASYMMETRIC VARIATIONAL INEQUALITY PROBLEMS [J].
FUKUSHIMA, M .
MATHEMATICAL PROGRAMMING, 1992, 53 (01) :99-110