Time-optimal polarization transfer from an electron spin to a nuclear spin

被引:2
作者
Yuan, Haidong [1 ]
Zeier, Robert [2 ]
Pomplun, Nikolas [2 ,3 ]
Glaser, Steffen J. [2 ]
Khaneja, Navin [4 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong, Peoples R China
[2] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany
[3] Bruker BioSpin GmbH, D-76287 Rheinstetten, Germany
[4] Indian Inst Technol, Dept Elect Engn, Bombay 400076, Maharashtra, India
关键词
BROAD-BAND EXCITATION; QUANTUM OPTIMAL-CONTROL; MAGNETIC-RESONANCE; MODULATED PULSES; DESIGN; SYSTEMS; SPECTROSCOPY; INVERSION; LIMITS; HETERONUCLEAR;
D O I
10.1103/PhysRevA.92.053414
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Polarization transfers from an electron spin to a nuclear spin are essential for various physical tasks, such as dynamic nuclear polarization in nuclear magnetic resonance and quantum information processing on hybrid electron-nuclear spin systems. We present time-optimal schemes for electron-nuclear polarization transfers which improve on conventional approaches, and we thereby establish an important class of faster controls. We highlight how time-optimal polarization transfers and their optimality are related to the time optimality of unitary transformations. Moreover, our work develops generally applicable analytic methods for analyzing the limits in controlling quantum systems.
引用
收藏
页数:12
相关论文
共 136 条
[1]   Minimum time optimal synthesis for two level quantum systems [J].
Albertini, Francesca ;
D'Alessandro, Domenico .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
[2]  
ALLEN RL, 2004, SIGNAL ANAL
[3]  
[Anonymous], 2003, Principles of the Quantum Control of Molecular Processes
[4]   Optimal control of the inversion of two spins in Nuclear Magnetic Resonance [J].
Assemat, E. ;
Attar, L. ;
Penouilh, M. -J. ;
Picquet, M. ;
Tabard, A. ;
Zhang, Y. ;
Glaser, S. J. ;
Sugny, D. .
CHEMICAL PHYSICS, 2012, 405 :71-75
[5]   Simultaneous time-optimal control of the inversion of two spin-1/2 particles [J].
Assemat, E. ;
Lapert, M. ;
Zhang, Y. ;
Braun, M. ;
Glaser, S. J. ;
Sugny, D. .
PHYSICAL REVIEW A, 2010, 82 (01)
[6]   Optimal simulation of two-qubit Hamiltonians using general local operations [J].
Bennett, CH ;
Cirac, JI ;
Leifer, MS ;
Leung, DW ;
Linden, N ;
Popescu, S ;
Vidal, G .
PHYSICAL REVIEW A, 2002, 66 (01) :123051-1230516
[7]  
Bonnard B., 2003, MATH APPLIC, V40
[8]   RIEMANNIAN METRICS ON 2D-MANIFOLDS RELATED TO THE EULER-POINSOT RIGID BODY MOTION [J].
Bonnard, Bernard ;
Cots, Olivier ;
Pomet, Jean-Baptiste ;
Shcherbakova, Nataliya .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2014, 20 (03) :864-893
[9]   THE SERRET-ANDOYER RIEMANNIAN METRIC AND EULER-POINSOT RIGID BODY MOTION [J].
Bonnard, Bernard ;
Cots, Olivier ;
Shcherbakova, Nataliya .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2013, 3 (03) :287-302
[10]   Time-Minimal Control of Dissipative Two-Level Quantum Systems: The Generic Case [J].
Bonnard, Bernard ;
Chyba, Monique ;
Sugny, Dominique .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (11) :2598-2610