Accuracy of the time-dependent Hartree-Fock approximation for uncorrelated initial states

被引:19
作者
Bardos, C
Golse, F
Gottlieb, AD
Mauser, NJ
机构
[1] Univ Paris 07, F-75252 Paris 05, France
[2] Lab JL Lions, F-75252 Paris 05, France
[3] Univ Vienna, Wolfgang Pauli Inst, Inst Math, A-1090 Vienna, Austria
关键词
quantum N-body problem; mean-field dynamics of fermions; time-dependent Hartree-Fock equations; quasi-free states;
D O I
10.1023/B:JOSS.0000022381.86923.0a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article concerns the time-dependent Hartree-Fock (TDHF) approximation of single-particle dynamics in systems of interacting fermions. We find that the TDHF approximation is accurate when there are sufficiently many particles and the initial many-particle state is any Gibbs equilibrium state for noninteracting fermions (with Slater determinants as a special example). Assuming a bounded two-particle interaction, we obtain a bound on the error of the TDHF approximation, valid for short times. We further show that the error of the TDHF approximation vanishes at all times in the mean field limit.
引用
收藏
页码:1037 / 1055
页数:19
相关论文
共 13 条
[1]   NON-LINEAR QUANTUM DYNAMICAL SEMIGROUPS FOR MANY-BODY OPEN SYSTEMS [J].
ALICKI, R ;
MESSER, J .
JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (02) :299-312
[2]   Mean field dynamics of fermions and the time-dependent Hartree-Fock equation [J].
Bardos, C ;
Golse, F ;
Gottlieb, AD ;
Mauser, NJ .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (06) :665-683
[3]   Derivation of the Schrodinger-Poisson equation from the quantum N-body problem [J].
Bardos, C ;
Erdös, L ;
Golse, F ;
Mauser, N ;
Yau, HT .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (06) :515-520
[4]  
Bardos C., 2000, METHODS APPL ANAL, V7, P275, DOI [DOI 10.4310/MAA.2000.V7.N2.A2), DOI 10.4310/MAA.2000.V7.N2.A2]
[5]  
BARDOS C, ARCH TECHNICAL REPOR
[6]   HARTREE-FOCK TIME-DEPENDENT PROBLEM [J].
BOVE, A ;
DAPRATO, G ;
FANO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 49 (01) :25-33
[7]   EXISTENCE PROOF FOR HARTREE-FOCK TIME-DEPENDENT PROBLEM WITH BOUNDED 2-BODY INTERACTION [J].
BOVE, A ;
DAPRATO, G ;
FANO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 37 (03) :183-191
[8]  
Bratteli O., 1997, OPERATOR ALGEBRAS QU, V2
[9]   GLOBAL EXISTENCE OF SOLUTIONS TO CAUCHY-PROBLEM FOR TIME-DEPENDENT HARTREE EQUATIONS [J].
CHADAM, JM ;
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (05) :1122-1130
[10]  
Dirac PAM, 1930, P CAMB PHILOS SOC, V26, P376