Graphene Growth and Device Integration

被引:51
作者
Colombo, Luigi [1 ]
Wallace, Robert M. [2 ]
Ruoff, Rodney S. [3 ]
机构
[1] Texas Instruments Inc, Dallas, TX 75243 USA
[2] Univ Texas Dallas, Richardson, TX 75080 USA
[3] Univ Texas Austin, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Chemical vapor deposition (CVD); electrochemical transfer; graphene; mobility; Raman spectroscopy; X-ray photoelectron spectroscopy; ATOMIC LAYER DEPOSITION; FIELD-EFFECT TRANSISTORS; BILAYER GRAPHENE; BORON-NITRIDE; ELECTRONIC-STRUCTURE; EPITAXIAL GRAPHENE; HIGH-QUALITY; TRANSPORT-PROPERTIES; CURRENT SATURATION; CARBON NANOTUBES;
D O I
10.1109/JPROC.2013.2260114
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene has been introduced to the electronics community as a potentially useful material for scaling electronic devices to meet low-power and high-performance targets set by the semiconductor industry international road-map, radio-frequency (RF) devices, and many more applications. Growth and integration of graphene for any device is challenging and will require significant effort and innovation to address the many issues associated with integrating the monolayer, chemically inert surface with metals and dielectrics. In this paper, we review the growth and integration of graphene for simple field-effect transistors and present physical and electrical data on the integrated graphene with metals and dielectrics.
引用
收藏
页码:1536 / 1556
页数:21
相关论文
共 182 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Monolayer graphene growth on Ni(111) by low temperature chemical vapor deposition [J].
Addou, Rafik ;
Dahal, Arjun ;
Sutter, Peter ;
Batzill, Matthias .
APPLIED PHYSICS LETTERS, 2012, 100 (02)
[3]   Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire [J].
Ago, Hiroki ;
Ito, Yoshito ;
Mizuta, Noriaki ;
Yoshida, Kazuma ;
Hu, Baoshan ;
Orofeo, Carlo M. ;
Tsuji, Masaharu ;
Ikeda, Ken-ichi ;
Mizuno, Seigi .
ACS NANO, 2010, 4 (12) :7407-7414
[4]   Seeding Atomic Layer Deposition of High-k Dielectrics on Epitaxial Graphene with Organic Self-Assembled Monolayers [J].
Alaboson, Justice M. P. ;
Wang, Qing Hua ;
Emery, Jonathan D. ;
Lipson, Albert L. ;
Bedzyk, Michael J. ;
Elam, Jeffrey W. ;
Pellin, Michael J. ;
Hersam, Mark C. .
ACS NANO, 2011, 5 (06) :5223-5232
[5]  
[Anonymous], 1938, J SOC CHEM IND LOND, V57, P398
[6]   Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides [J].
Ayari, Anthony ;
Cobas, Enrique ;
Ogundadegbe, Ololade ;
Fuhrer, Michael S. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (01)
[7]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[8]   Enhanced conductivity in graphene layers and at their edges [J].
Banerjee, S ;
Sardar, M ;
Gayathri, N ;
Tyagi, AK ;
Raj, B .
APPLIED PHYSICS LETTERS, 2006, 88 (06)
[9]   Graphene for CMOS and Beyond CMOS Applications [J].
Banerjee, Sanjay K. ;
Register, Leonard Franklin ;
Tutuc, Emanuel ;
Basu, Dipanjan ;
Kim, Seyoung ;
Reddy, Dharmendar ;
MacDonald, Allan H. .
PROCEEDINGS OF THE IEEE, 2010, 98 (12) :2032-2046
[10]   The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects [J].
Batzill, Matthias .
SURFACE SCIENCE REPORTS, 2012, 67 (3-4) :83-115