ANALYSIS OF A REACTION-DIFFUSION EPIDEMIC MODEL WITH ASYMPTOMATIC TRANSMISSION

被引:13
作者
Fitzgibbon, W. E. [1 ]
Morgan, J. J. [1 ]
Webb, G. F. [2 ]
Wu, Y. [3 ]
机构
[1] Univ Houston, Math Dept, Houston, TX 77204 USA
[2] Vanderbilt Univ, Math Dept, Nashville, TN 37240 USA
[3] Middle Tennessee State Univ, Math Sci Dept, Murfreesboro, TN 37132 USA
关键词
Vector-Host; Reaction-Diffusion; Epidemic Model; Asymptomatic Transmission; REPRODUCTION NUMBERS; COVID-19; EPIDEMIC; GLOBAL EXISTENCE; DISEASE; CHINA; BOUNDEDNESS; INFECTION; OUTBREAKS; DYNAMICS; SYSTEM;
D O I
10.1142/S0218339020500126
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a dynamic model of an evolving epidemic in a spatially inhomogeneous environment. We analyze the model, as a system of reaction-diffusion partial differential equations, to predict the outbreak and spatio-temporal spread of the disease. The model features both an asymptomatic infectious stage and symptomatic infectious stage, with both the asymptomatic and the symptomatic infected populations dispersing through the susceptible population. We prove the existence and uniform boundedness of solutions, and investigate their long-time behavior. We apply the spatially homogeneous version of the model to the current COVID-19 epidemic in Brazil.
引用
收藏
页码:561 / 587
页数:27
相关论文
共 74 条
[1]  
[Anonymous], 2020, medRxiv, DOI [DOI 10.1371/JOURNAL.PONE.0230405, 10.1101/2020.02.11.20022186]
[2]  
Arenas A., 2020, Phys. Rev. X, DOI DOI 10.1101/2020.03.21.20040022
[3]   Presumed Asymptomatic Carrier Transmission of COVID-19 [J].
Bai, Yan ;
Yao, Lingsheng ;
Wei, Tao ;
Tian, Fei ;
Jin, Dong-Yan ;
Chen, Lijuan ;
Wang, Meiyun .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (14) :1406-1407
[4]  
Baily NTJ, 1957, MATH THEORY EPIDEMIC
[5]   Modeling the spatial spread of infectious diseases: The GLobal Epidemic and Mobility computational model [J].
Balcan, Duygu ;
Goncalves, Bruno ;
Hu, Hao ;
Ramasco, Jose J. ;
Colizza, Vittoria ;
Vespignani, Alessandro .
JOURNAL OF COMPUTATIONAL SCIENCE, 2010, 1 (03) :132-145
[6]  
Bastos S. B., ARXIV200314288
[7]  
Brand S. P. C., 2020, FORECASTING SCALE CO, DOI 10.1101/2020.04.09.20059865
[8]  
Canabarro A, DATA DRIVEN STUDY CO
[9]   GLOBAL SOLUTION FOR A DIFFUSIVE NON-LINEAR DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (02) :274-284
[10]  
Carnegie Mellon University, 2020, MATH MOD SHOWS HET A