Bifurcation Analysis of a Coupled Kuramoto-Sivashinsky- and Ginzburg-Landau-Type Model

被引:0
作者
Shi, Lei [1 ,2 ,3 ]
机构
[1] Nanjing Agr Univ, Sch Sci, Nanjing 210095, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Jiangsu Key Lab NSLSCS, Nanjing 210046, Jiangsu, Peoples R China
关键词
MARANGONI CONVECTION; PATTERN-FORMATION; EQUATION; INSTABILITY;
D O I
10.1155/2013/926512
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the bifurcation and stability of trivial stationary solution (0, 0) of coupled Kuramoto-Sivashinsky- and Ginzburg-Landau-type equations (KS-GL) on a bounded domain (0, L) with Neumann's boundary conditions. The asymptotic behavior of the trivial solution of the equations is considered. With the length L of the domain regarded as bifurcation parameter, branches of nontrivial solutions are shown by using the perturbation method. Moreover, local behavior of these branches is studied, and the stability of the bifurcated solutions is analyzed as well.
引用
收藏
页数:8
相关论文
共 12 条
[1]   Localized pattern formation with a large-scale mode: Slanted snaking [J].
Dawes, J. H. P. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (01) :186-206
[2]   Low-dimensional behaviour in the complex Ginzburg-Landau equation [J].
Doering, Charles R. ;
Gibbon, John D. ;
Holm, Darryl D. ;
Nicolaenko, Basil .
NONLINEARITY, 1988, 1 (02) :279-309
[3]   On a coupled Kuramoto-Sivashinsky and Ginzburg-Landau-type model for the Marangoni convection [J].
Duan, JQ ;
Bu, C ;
Gao, HJ ;
Taboada, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (05) :2465-2474
[4]   INTERACTION BETWEEN SHORT-SCALE MARANGONI CONVECTION AND LONG-SCALE DEFORMATIONAL INSTABILITY [J].
GOLOVIN, AA ;
NEPOMNYASHCHY, AA ;
PISMEN, LM .
PHYSICS OF FLUIDS, 1994, 6 (01) :34-48
[5]   NONLINEAR INSTABILITY BURST IN PLANE PARALLEL FLOW [J].
HOCKING, LM ;
STEWARTSON, K ;
STUART, JT .
JOURNAL OF FLUID MECHANICS, 1972, 51 (FEB22) :705-+
[6]   NONLINEAR-WAVES AND TURBULENCE IN MARANGONI CONVECTION [J].
KAZHDAN, D ;
SHTILMAN, L ;
GOLOVIN, AA ;
PISMEN, LM .
PHYSICS OF FLUIDS, 1995, 7 (11) :2679-2685
[7]   Bifurcation from an equilibrium of the steady state Kuramoto-Sivashinsky equation in two spatial dimensions [J].
Li, CP ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (01) :103-114
[8]   Bifurcation analysis of the Kuramoto-Sivashinsky equation in one spatial dimension [J].
Li, CP ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (09) :2493-2499
[9]   Pattern formation with a conservation law [J].
Matthews, PC ;
Cox, SM .
NONLINEARITY, 2000, 13 (04) :1293-1320
[10]   One-dimensional pattern formation with Galilean invariance near a stationary bifurcation [J].
Matthews, PC ;
Cox, SM .
PHYSICAL REVIEW E, 2000, 62 (02) :R1473-R1476