ddpcRquant: threshold determination for single channel droplet digital PCR experiments

被引:102
作者
Trypsteen, Wim [1 ,2 ]
Vynck, Matthijs [3 ]
De Neve, Jan [3 ]
Bonczkowski, Pawel [1 ,2 ]
Kiselinova, Maja [1 ,2 ]
Malatinkova, Eva [1 ,2 ]
Vervisch, Karen [1 ,2 ]
Thas, Olivier [3 ,4 ]
Vandekerckhove, Linos [1 ,2 ]
De Spiegelaere, Ward [1 ,2 ]
机构
[1] Univ Ghent, HIV Translat Res Unit, Dept Internal Med, B-9000 Ghent, Belgium
[2] Univ Hosp, B-9000 Ghent, Belgium
[3] Univ Ghent, Dept Math Modelling Stat & Bioinformat, B-9000 Ghent, Belgium
[4] Univ Wollongong, Sch Math & Appl Stat, Natl Inst Appl Stat Res Australia NIASRA, Wollongong, NSW 2522, Australia
关键词
Droplet digital PCR; Data analysis; R software; Rain; Automation; Extreme value distribution; Threshold determination; POLYMERASE-CHAIN-REACTION; DNA; QUANTIFICATION; QUANTITATION; ASSAY; RNA;
D O I
10.1007/s00216-015-8773-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Digital PCR is rapidly gaining interest in the field of molecular biology for absolute quantification of nucleic acids. However, the first generation of platforms still needs careful validation and requires a specific methodology for data analysis to distinguish negative from positive signals by defining a threshold value. The currently described methods to assess droplet digital PCR (ddPCR) are based on an underlying assumption that the fluorescent signal of droplets is normally distributed. We show that this normality assumption does not likely hold true for most ddPCR runs, resulting in an erroneous threshold. We suggest a methodology that does not make any assumptions about the distribution of the fluorescence readouts. A threshold is estimated by modelling the extreme values in the negative droplet population using extreme value theory. Furthermore, the method takes shifts in baseline fluorescence between samples into account. An R implementation of our method is available, allowing automated threshold determination for absolute ddPCR quantification using a single fluorescent reporter.
引用
收藏
页码:5827 / 5834
页数:8
相关论文
共 22 条
[1]  
[Anonymous], 2014, The R Foundation for Statistical Computing
[2]   On a fast, robust estimator of the mode:: Comparisons to other robust estimators with applications [J].
Bickel, David R. ;
Fruehwirth, Rudolf .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (12) :3500-3530
[3]   HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects [J].
Buzon, Maria J. ;
Massanella, Marta ;
Llibre, Josep M. ;
Esteve, Anna ;
Dahl, Viktor ;
Puertas, Maria C. ;
Gatell, Josep M. ;
Domingo, Pere ;
Paredes, Roger ;
Sharkey, Mark ;
Palmer, Sarah ;
Stevenson, Mario ;
Clotet, Bonaventura ;
Blanco, Julia ;
Martinez-Picado, Javier .
NATURE MEDICINE, 2010, 16 (04) :460-U143
[4]   Touchdown digital polymerase chain reaction for quantification of highly conserved sequences in the HIV-1 genome [J].
De Spiegelaere, Ward ;
Malatinkova, Eva ;
Kiselinova, Maja ;
Bonczkowski, Pawel ;
Verhofstede, Chris ;
Vogelaers, Dirk ;
Vandekerckhove, Linos .
ANALYTICAL BIOCHEMISTRY, 2013, 439 (02) :201-203
[5]   Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot [J].
Dreo, Tanja ;
Pirc, Manca ;
Ramsak, Ziva ;
Pavsic, Jernej ;
Milavec, Mojca ;
Zel, Jana ;
Gruden, Kristina .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2014, 406 (26) :6513-6528
[6]   Mathematical Analysis of Copy Number Variation in a DNA Sample Using Digital PCR on a Nanofluidic Device [J].
Dube, Simant ;
Qin, Jian ;
Ramakrishnan, Ramesh .
PLOS ONE, 2008, 3 (08)
[7]   Cellular viral rebound after cessation of potent antiretroviral therapy predicted by levels of multiply spliced HIV-1 RNA encoding nef [J].
Fischer, M ;
Joos, B ;
Hirschel, B ;
Bleiber, G ;
Weber, R ;
Günthard, HF .
JOURNAL OF INFECTIOUS DISEASES, 2004, 190 (11) :1979-1988
[8]   High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number [J].
Hindson, Benjamin J. ;
Ness, Kevin D. ;
Masquelier, Donald A. ;
Belgrader, Phillip ;
Heredia, Nicholas J. ;
Makarewicz, Anthony J. ;
Bright, Isaac J. ;
Lucero, Michael Y. ;
Hiddessen, Amy L. ;
Legler, Tina C. ;
Kitano, Tyler K. ;
Hodel, Michael R. ;
Petersen, Jonathan F. ;
Wyatt, Paul W. ;
Steenblock, Erin R. ;
Shah, Pallavi H. ;
Bousse, Luc J. ;
Troup, Camille B. ;
Mellen, Jeffrey C. ;
Wittmann, Dean K. ;
Erndt, Nicholas G. ;
Cauley, Thomas H. ;
Koehler, Ryan T. ;
So, Austin P. ;
Dube, Simant ;
Rose, Klint A. ;
Montesclaros, Luz ;
Wang, Shenglong ;
Stumbo, David P. ;
Hodges, Shawn P. ;
Romine, Steven ;
Milanovich, Fred P. ;
White, Helen E. ;
Regan, John F. ;
Karlin-Neumann, George A. ;
Hindson, Christopher M. ;
Saxonov, Serge ;
Colston, Bill W. .
ANALYTICAL CHEMISTRY, 2011, 83 (22) :8604-8610
[9]   Absolute quantification by droplet digital PCR versus analog real-time PCR [J].
Hindson, Christopher M. ;
Chevillet, John R. ;
Briggs, Hilary A. ;
Gallichotte, Emily N. ;
Ruf, Ingrid K. ;
Hindson, Benjamin J. ;
Vessella, Robert L. ;
Tewari, Muneesh .
NATURE METHODS, 2013, 10 (10) :1003-+
[10]   Low copy target detection by Droplet Digital PCR through application of a novel open access bioinformatic pipeline, 'definetherain' [J].
Jones, Mathew ;
Williams, James ;
Gaertner, Kathleen ;
Phillips, Rodney ;
Hurst, Jacob ;
Frater, John .
JOURNAL OF VIROLOGICAL METHODS, 2014, 202 :46-53