Titanium distribution between blast furnace slag and iron for blast furnace linings protection

被引:14
作者
Sun, Jian [1 ,2 ,3 ,4 ]
Wang, Shuai [4 ,5 ]
Chu, Mansheng [1 ]
Chen, Mao [4 ]
Zhao, Zhixing [2 ,3 ]
Zhao, Baojun [2 ,3 ,4 ]
Liu, Zhenggen [1 ]
机构
[1] NortheasternUniv, Sch Met, Shenyang, Peoples R China
[2] Shougang Grp Res Inst Technol, Beijing, Peoples R China
[3] Beijing Key Lab Green Recyclable Proc Iron & Stee, Beijing, Peoples R China
[4] Univ Queensland, Sch Chem Engn, Brisbane, Qld, Australia
[5] Cent South Univ, Sch Minerals Proc & Bioengn, Changsha, Peoples R China
基金
国家重点研发计划;
关键词
titanium distribution; lining protection; basicity; iron; slag; TiO(2)activity; REDUCTION; THERMODYNAMICS; EQUILIBRIUM; BEHAVIOR; PROGRESS; SYSTEM; PHASE; METAL; MODEL; LAYER;
D O I
10.1080/03019233.2018.1557847
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Titanium-bearing materials are commonly adopted for the protection of blast furnace hearth in the actual practices. In this study, the effects of smelting temperature, amount of TiO(2)addition, slag basicity and MgO content on the titanium distribution behaviours were experimentally studied using high-temperature smelting, equilibrium and quenching with EPMA techniques. The experiments results show that the increases in smelting temperature and TiO(2)content in the slag contributes to the transformation of titanium from the slag into the iron. While the increasing slag binary basicity suppresses the reduction of titanium oxides. The change of MgO content has a slight influence on the titanium distribution. The plant data from the operating blast furnace were also extracted for comparisons and the trends well agree with the present measurements.
引用
收藏
页码:545 / 552
页数:8
相关论文
共 27 条
[11]   A Model to Simulate Titanium Behavior in the Iron Blast Furnace Hearth [J].
Guo, Bao-Yu ;
Zulli, Paul ;
Maldonado, Daniel ;
Yu, Ai-Bing .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2010, 41 (04) :876-885
[12]  
Huang X.H., 2013, Principle of Ferrous Metallurgy, V4th
[13]   Dissection Investigation of Blast Furnace Hearth-Kokura No. 2 Blast Furnace (2nd Campaign) [J].
Inada, Takanobu ;
Kasai, Atsuya ;
Nakano, Kaoru ;
Komatsu, Shusaku ;
Ogawa, Akinobu .
ISIJ INTERNATIONAL, 2009, 49 (04) :470-478
[14]   Analysis of Blast Furnace Hearth Sidewall Erosion and Protective Layer Formation [J].
Jiao, Ke-Xin ;
Zhang, Jian-Liang ;
Liu, Zheng-Jian ;
Chen, Chun-Lin ;
Liu, Yan-Xiang .
ISIJ INTERNATIONAL, 2016, 56 (11) :1956-1963
[15]   Formation mechanism of the protective layer in a blast furnace hearth [J].
Jiao, Ke-xin ;
Zhang, Jian-liang ;
Liu, Zheng-jian ;
Xu, Meng ;
Liu, Feng .
INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2015, 22 (10) :1017-1024
[16]   Thermodynamics of titanium oxide in ladle slags [J].
Jung, SM ;
Fruehan, RJ .
ISIJ INTERNATIONAL, 2001, 41 (12) :1447-1453
[17]  
Liu M, 2012, IRONMAKING, V31, P36
[18]   Recent Progress on Long Service Life Design of Chinese Blast Furnace Hearth [J].
Liu, Zheng-jian ;
Zhang, Jian-liang ;
Zuo, Hai-bin ;
Yang, Tian-jun .
ISIJ INTERNATIONAL, 2012, 52 (10) :1713-1723
[19]   Properties of Low-MgO Ironmaking Blast Furnace Slags [J].
Ma, Xiaodong ;
Chen, Mao ;
Zhu, Jinming ;
Xu, Haifa ;
Wang, Geoff ;
Zhao, Baojun .
ISIJ INTERNATIONAL, 2018, 58 (08) :1402-1405
[20]  
Mehta P, 1957, T INDIAN I METALS, V10, P51