Thermal modelling of ethanol-fuelled Solid Oxide Fuel Cells

被引:48
作者
Chen, Bin [1 ,2 ]
Xu, Haoran [2 ]
Tan, Peng [2 ,3 ]
Zhang, Yuan [2 ,4 ]
Xu, Xiaoming [2 ,5 ]
Cai, Weizi [2 ]
Chen, Meina [2 ,6 ]
Ni, Meng [2 ]
机构
[1] Shenzhen Univ, Inst Deep Earth Sci & Green Energy, Shenzhen 518060, Peoples R China
[2] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Bldg Energy Res Grp, Hung Hom,Kowloon, Hong Kong, Peoples R China
[3] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230026, Anhui, Peoples R China
[4] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Jiangsu, Peoples R China
[5] Jiangsu Univ, Sch Automot & Traff Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[6] Shandong Normal Univ, Sch Phys & Elect, 88 Wenhua Dong Rd, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Internal reforming; Numerical modelling; Solid oxide fuel cells; Ethanol; WATER STORAGE CAPABILITY; PARTIAL OXIDATION; LOW-TEMPERATURE; HYDROGEN-PRODUCTION; CARBON DEPOSITION; OXYGEN REDUCTION; ANODE; PERFORMANCE; CATALYSTS; CERIA;
D O I
10.1016/j.apenergy.2019.01.025
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A 2D thermal model is developed to investigate an ethanol-fuelled Solid Oxide Fuel Cells (E-SOFC) with a Ni-ZrO2/CeO2 functional layer for internal reforming of ethanol. The catalytic kinetics of the functional layer used in this model is validated in terms of ethanol conversion and product selectivity in the experimental data of a fixed-bed testing reactor. The simulated E-SOFC demonstrates a typical performance of 4385.6 A m(-2) at 0.6 V, corresponding to a power density of 2631.4 W m(-2), with a high conversion ratio of ethanol (0.903) at 700 degrees C. Parametric studies of voltage, water to ethanol ratio and inlet fuel gas temperature are conducted and comprehensively analysed, concluding that the positive effects of lowering the voltage and increasing the inlet temperature on the ethanol conversion. We find that adding the reforming layer is a facile and effective way to replace the conventional H-2 by abundant-in-nature ethanol for SOFC from the numerical analysis. Attention is also drawn to the carbon deposition risk by thermodynamic analysis of the gas composition, suggesting to keep the water to ethanol ratio higher than 3. The as-developed model can serve as an effective tool for the optimization of the operating conditions and geometry design to avoid carbon deposition and improve the performance of ethanol-fuelled Solid Oxide Fuel Cells.
引用
收藏
页码:476 / 486
页数:11
相关论文
共 64 条
[1]   Catalysts in direct ethanol fuel cell (DEFC): An overview [J].
Akhairi, M. A. F. ;
Kamarudin, S. K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (07) :4214-4228
[2]   Challenges and opportunities in improving the production of bio-ethanol [J].
Baeyens, Jan ;
Kang, Qian ;
Appels, Lise ;
Dewil, Raf ;
Lv, Yongqin ;
Tan, Tianwei .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2015, 47 :60-88
[3]   Energy Efficiency Enhancement of Ethanol Electrooxidation on Pd-CeO2/C in Passive and Active Polymer Electrolyte-Membrane Fuel Cells [J].
Bambagioni, Valentina ;
Bianchini, Claudio ;
Chen, Yanxin ;
Filippi, Jonathan ;
Fornasiero, Paolo ;
Innocenti, Massimo ;
Lavacchi, Alessandro ;
Marchionni, Andrea ;
Oberhauser, Werner ;
Vizza, Francesco .
CHEMSUSCHEM, 2012, 5 (07) :1266-1273
[4]   Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol) [J].
Bambagioni, Valentina ;
Bianchini, Claudio ;
Marchionni, Andrea ;
Filippi, Jonathan ;
Vizza, Francesco ;
Teddy, Jacques ;
Serp, Philippe ;
Zhiani, Mohammad .
JOURNAL OF POWER SOURCES, 2009, 190 (02) :241-251
[5]   Direct carbon fuel cell: Fundamentals and recent developments [J].
Cao, Dianxue ;
Sun, Yong ;
Wang, Guiling .
JOURNAL OF POWER SOURCES, 2007, 167 (02) :250-257
[6]   Syngas/power cogeneration from proton conducting solid oxide fuel cells assisted by dry methane reforming: A thermal-electrochemical modelling study [J].
Chen, Bin ;
Xu, Haoran ;
Sun, Qiong ;
Zhang, Houcheng ;
Tan, Peng ;
Cai, Weizi ;
He, Wei ;
Ni, Meng .
ENERGY CONVERSION AND MANAGEMENT, 2018, 167 :37-44
[7]   A novel design of solid oxide electrolyser integrated with magnesium hydride bed for hydrogen generation and storage - A dynamic simulation study [J].
Chen, Bin ;
Xu, Haoran ;
Zhang, Houcheng ;
Tan, Peng ;
Cai, Weizi ;
Ni, Meng .
APPLIED ENERGY, 2017, 200 :260-272
[8]   Modelling of SOEC-FT reactor: Pressure effects on methanation process [J].
Chen, Bin ;
Xu, Haoran ;
Ni, Meng .
APPLIED ENERGY, 2017, 185 :814-824
[9]   Modelling of finger-like channelled anode support for SOFCs application [J].
Chen, Bin ;
Xu, Haoran ;
Ni, Meng .
SCIENCE BULLETIN, 2016, 61 (17) :1324-1332
[10]   Direct synthesis of methane from CO2-H2O co-electrolysis in tubular solid oxide electrolysis cells [J].
Chen, Long ;
Chen, Fanglin ;
Xia, Changrong .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (12) :4018-4022