Evaluating the Vapnik-Chervonenkis dimension of artificial neural networks using the Poincare polynomial

被引:1
作者
Oxley, ME [1 ]
Carter, MA [1 ]
机构
[1] USAF, Inst Technol, Dept Math & Stat, Wright Patterson AFB, OH 45433 USA
来源
APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE II | 1999年 / 3722卷
关键词
artificial neural networks; Vapnik-Chervonenkis (V-C) dimension; Poincare polynomial; combinatorial geometry; hyperplane arrangements; lattice theory;
D O I
10.1117/12.342902
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Vapnik-Chervonenkis (V-C) dimension of a set, of functions representing a feed-forward, multi-layered, single output artificial neural network (ANN) with hard-limited activation functions can be evaluated using the Poincare polynomial of the implied hyperplane arrangement. This ANN geometrically is a hyperplane arrangement configured to dichotomize a signed set (i.e., a two-class set). Since it is known that the cut-intersections of the hyperplane arrangement; forms a semi-lattice, then the Poincare polynomial can be used to evaluate certain geometric invariants of this semi-lattice, in particular, the cardinality of the resultant chamber set of the arrangements, which is shown to be the V-C dimension. From this theory comes a stable formula to compute the V-C dimension values.
引用
收藏
页码:68 / 75
页数:8
相关论文
共 10 条
[1]  
Baum E. B., 1988, Journal of Complexity, V4, P193, DOI 10.1016/0885-064X(88)90020-9
[2]  
CARTER MA, 1995, AFITDSENC95J01
[3]   GEOMETRICAL AND STATISTICAL PROPERTIES OF SYSTEMS OF LINEAR INEQUALITIES WITH APPLICATIONS IN PATTERN RECOGNITION [J].
COVER, TM .
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (03) :326-&
[4]  
ORLIK P, 1991, ARRANGEMENTS HYPERPL
[5]  
ROBERTS S, 1989, P LOND MATH SOC, V19, P405
[6]   FEEDFORWARD NETS FOR INTERPOLATION AND CLASSIFICATION [J].
SONTAG, ED .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1992, 45 (01) :20-48
[7]   Sigmoids Distinguish More Efficiently Than Heavisides [J].
Sontag, Eduardo D. .
NEURAL COMPUTATION, 1989, 1 (04) :470-472
[8]   UNIFORM CONVERGENCE OF RELATIVE FREQUENCIES OF EVENTS TO THEIR PROBABILITIES [J].
VAPNIK, VN ;
CHERVONENKIS, AY .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (02) :264-+
[9]   SOME SPECIAL VAPNIK-CHERVONENKIS CLASSES [J].
WENOCUR, RS ;
DUDLEY, RM .
DISCRETE MATHEMATICS, 1981, 33 (03) :313-318
[10]  
ZASLAVSKY T, 1975, MEM AM MATH SOC, V154, P1