MultiDA: Chemometric software for multivariate data analysis based on Matlab

被引:11
作者
Yang, Qianxu [1 ]
Zhang, Liangxiao [1 ]
Wang, Longxing [1 ]
Xiao, Hongbin [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Separat Sci Analyt Chem, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemometrics software; Matlab; Multivariate analysis; Metabolomics/metabonomics; Multi-model comparison; PRINCIPAL COMPONENT ANALYSIS; LEAST-SQUARES REGRESSION; DISCRIMINANT-ANALYSIS; GENETIC ALGORITHMS; CALIBRATION; VALIDATION; SELECTION; TOOL; PLS;
D O I
10.1016/j.chemolab.2012.03.019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multivariate data analysis (MultiDA), a user-friendly interface chemometric software, is developed for the routine metabolomics/metabonomics data analysis. There are mainly two advantages for MultiDA. First, it could simultaneously provide multiply methods for data preprocessing and multivariate analysis. The main chemometric methods in MultiDA contains k-means cluster analysis, k-medoid cluster analysis, hierarchical cluster analysis (HCA), principal component analysis (PCA), robust principal component analysis (ROPCA), non-linear PCA (NLPCA), non-linear iterative partial least squares (NIPALS), SIMPLS, discriminate analysis (DA). canonical discriminate analysis (CDA), stepwise discriminate analysis (SDA), uncorrelated linear discriminate analysis (ULDA) and some data preprocessing methods, such as standardization, outlier detection, genetic algorithm for feature selection (GAFS), orthogonal signal correction (OSC), weight analysis (Weight) etc. Second, multi-model comparison could be conducted to obtain the best outcome. Moreover, this software is available for free. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 26 条
[1]   A comparison of nine PLS1 algorithms [J].
Andersson, Martin .
JOURNAL OF CHEMOMETRICS, 2009, 23 (9-10) :518-529
[2]  
[Anonymous], 2009, APPL SPECTROSC, DOI DOI 10.1366/000370210791114185
[3]   TOMCAT: A MATLAB toolbox for multivariate calibration techniques [J].
Daszykowski, Michal ;
Serneels, Sven ;
Kaczmarek, Krzysztof ;
Van Espen, Piet ;
Croux, Christophe ;
Walczak, Beata .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2007, 85 (02) :269-277
[4]   SIMPLS - AN ALTERNATIVE APPROACH TO PARTIAL LEAST-SQUARES REGRESSION [J].
DEJONG, S .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1993, 18 (03) :251-263
[5]  
Frank A., 2010, UCI machine learning repository, V213
[6]   PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL [J].
GELADI, P ;
KOWALSKI, BR .
ANALYTICA CHIMICA ACTA, 1986, 185 :1-17
[7]   DETECTING OUTLIERS IN A 2-WAY TABLE .1. STATISTICAL BEHAVIOR OF RESIDUALS [J].
GENTLEMAN, JF ;
WILK, MB .
TECHNOMETRICS, 1975, 17 (01) :1-14
[8]   PROCEDURES FOR DETECTING OUTLYING OBSERVATIONS IN SAMPLES [J].
GRUBBS, FE .
TECHNOMETRICS, 1969, 11 (01) :1-&
[9]  
Hoon S., 2001, SPIES 8 ANN INT S SM, P108
[10]   ROBPCA: A new approach to robust principal component analysis [J].
Hubert, M ;
Rousseeuw, PJ ;
Vanden Branden, K .
TECHNOMETRICS, 2005, 47 (01) :64-79