On Maximal Surfaces in Certain Non-Flat 3-Dimensional Robertson-Walker Spacetimes

被引:3
作者
Romero, Alfonso [2 ]
Rubio, Rafael M. [1 ]
机构
[1] Univ Cordoba, Dept Matemat, E-14071 Cordoba, Spain
[2] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
Spacelike surface; zero mean curvature; Calabi-Bernstein problem; Robertson-Walker spacetime; CONSTANT MEAN-CURVATURE; SPACELIKE HYPERSURFACES; UNIQUENESS;
D O I
10.1007/s11040-012-9108-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An upper bound for the integral, on a geodesic disc, of the squared length of the gradient of a distinguished function on any maximal surface in certain non-flat 3-dimensional Robertson-Walker spacetimes is obtained. As an application, a new proof of a known Calabi-Bernstein's theorem is given.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 19 条
[11]   ON THE GAUSS CURVATURE OF MAXIMAL SURFACES IN THE 3-DIMENSIONAL LORENTZ-MINKOWSKI SPACE [J].
ESTUDILLO, FJM ;
ROMERO, A .
COMMENTARII MATHEMATICI HELVETICI, 1994, 69 (01) :1-4
[12]  
Kazdan J.L., 1987, SEMINAR NEW RESULTS, VE10, P153
[13]  
KAZDAN JL, 1983, SURVEYS GEOMETRY SER
[14]  
Kobayashi O., 1983, TOKYO J MATH, V6, P297
[15]   Uniqueness of noncompact spacelike hypersurfaces of constant mean curvature in generalized Robertson walker spacetimes [J].
Latorre, JM ;
Romero, A .
GEOMETRIAE DEDICATA, 2002, 93 (01) :1-10
[16]   New examples of Calabi-Bernstein problems for some nonlinear equations [J].
Latorre, JM ;
Romero, A .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 15 (02) :153-163
[17]  
Oneill Barrett, 1983, Pure and Applied Mathematics
[19]   A Nonlinear Inequality Arising in Geometry and Calabi-Bernstein Type Problems [J].
Romero, Alfonso ;
Rubio, Rafael M. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,