On Maximal Surfaces in Certain Non-Flat 3-Dimensional Robertson-Walker Spacetimes

被引:3
|
作者
Romero, Alfonso [2 ]
Rubio, Rafael M. [1 ]
机构
[1] Univ Cordoba, Dept Matemat, E-14071 Cordoba, Spain
[2] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
Spacelike surface; zero mean curvature; Calabi-Bernstein problem; Robertson-Walker spacetime; CONSTANT MEAN-CURVATURE; SPACELIKE HYPERSURFACES; UNIQUENESS;
D O I
10.1007/s11040-012-9108-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An upper bound for the integral, on a geodesic disc, of the squared length of the gradient of a distinguished function on any maximal surface in certain non-flat 3-dimensional Robertson-Walker spacetimes is obtained. As an application, a new proof of a known Calabi-Bernstein's theorem is given.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 22 条