On Maximal Surfaces in Certain Non-Flat 3-Dimensional Robertson-Walker Spacetimes

被引:3
作者
Romero, Alfonso [2 ]
Rubio, Rafael M. [1 ]
机构
[1] Univ Cordoba, Dept Matemat, E-14071 Cordoba, Spain
[2] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
Spacelike surface; zero mean curvature; Calabi-Bernstein problem; Robertson-Walker spacetime; CONSTANT MEAN-CURVATURE; SPACELIKE HYPERSURFACES; UNIQUENESS;
D O I
10.1007/s11040-012-9108-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An upper bound for the integral, on a geodesic disc, of the squared length of the gradient of a distinguished function on any maximal surface in certain non-flat 3-dimensional Robertson-Walker spacetimes is obtained. As an application, a new proof of a known Calabi-Bernstein's theorem is given.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 19 条
[1]  
Alias L., 2003, Pub. de la RSME, V5, P23
[2]   Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems [J].
Alias, LJ ;
Romero, A ;
Sanchez, M .
TOHOKU MATHEMATICAL JOURNAL, 1997, 49 (03) :337-345
[3]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[4]   Spacelike hypersurfaces of constant mean curvature in certain spacetimes [J].
Alias, LJ ;
Romero, A ;
Sanchez, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) :655-661
[5]   Zero mean curvature surfaces with non-negative curvature in flat Lorentzian 4-spaces [J].
Alias, LJ ;
Palmer, B .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1982) :631-636
[6]   On the Gaussian curvature of maximal surfaces and the Calabi-Bernstein theorem [J].
Alías, LJ ;
Palmer, B .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :454-458
[7]  
Calabi E., 1970, Proc. Symp. Pure Math., VXV, P223
[8]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[9]  
Chern SS., 1969, Enseign. Math, V15, P53
[10]   GENERALIZED MAXIMAL SURFACES IN LORENTZ-MINKOWSKI SPACE L3 [J].
ESTUDILLO, FJM ;
ROMERO, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 :515-524