PRODIGY: personalized prioritization of driver genes

被引:33
作者
Dinstag, Gal [1 ]
Shamir, Ron [1 ]
机构
[1] Tel Aviv Univ, Blavatnik Sch Comp Sci, IL-6997801 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
COMPREHENSIVE MOLECULAR CHARACTERIZATION; CANCER; MUTATIONS; PATHWAYS; LUNG; COMBINATIONS; LANDSCAPE; BREAST; TREE;
D O I
10.1093/bioinformatics/btz815
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Evolution of cancer is driven by few somatic mutations that disrupt cellular processes, causing abnormal proliferation and tumor development, whereas most somatic mutations have no impact on progression. Distinguishing those mutated genes that drive tumorigenesis in a patient is a primary goal in cancer therapy: Knowledge of these genes and the pathways on which they operate can illuminate disease mechanisms and indicate potential therapies and drug targets. Current research focuses mainly on cohort-level driver gene identification but patient-specific driver gene identification remains a challenge. Methods: We developed a new algorithm for patient-specific ranking of driver genes. The algorithm, called PRODIGY, analyzes the expression and mutation profiles of the patient along with data on known pathways and protein-protein interactions. Prodigy quantifies the impact of each mutated gene on every deregulated pathway using the prize-collecting Steiner tree model. Mutated genes are ranked by their aggregated impact on all deregulated pathways. Results: In testing on five TCGA cancer cohorts spanning >2500 patients and comparison to validated driver genes, Prodigy outperformed extant methods and ranking based on network centrality measures. Our results pinpoint the pleiotropic effect of driver genes and show that Prodigy is capable of identifying even very rare drivers. Hence, Prodigy takes a step further toward personalized medicine and treatment.
引用
收藏
页码:1831 / 1839
页数:9
相关论文
共 58 条
[1]   PCSF: An R-package for network-based interpretation of high-throughput data [J].
Akhmedov, Murodzhon ;
Kedaigle, Amanda ;
Chong, Renan Escalante ;
Montemanni, Roberto ;
Bertoni, Francesco ;
Fraenkel, Ernest ;
Kwee, Ivo .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (07)
[2]   THE AGE DISTRIBUTION OF CANCER AND A MULTI-STAGE THEORY OF CARCINOGENESIS [J].
ARMITAGE, P ;
DOLL, R .
BRITISH JOURNAL OF CANCER, 1954, 8 (01) :1-12
[3]   Finding undetected protein associations in cell signaling by belief propagation [J].
Bailly-Bechet, M. ;
Borgs, C. ;
Braunstein, A. ;
Chayes, J. ;
Dagkessamanskaia, A. ;
Francois, J. -M. ;
Zecchina, R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (02) :882-887
[4]   DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer [J].
Bashashati, Ali ;
Haffari, Gholamreza ;
Ding, Jiarui ;
Ha, Gavin ;
Lui, Kenneth ;
Rosner, Jamie ;
Huntsman, David G. ;
Caldas, Carlos ;
Aparicio, Samuel A. ;
Shah, Sohrab P. .
GENOME BIOLOGY, 2012, 13 (12) :R124
[5]   Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes [J].
Cheng, Feixiong ;
Zhao, Junfei ;
Zhao, Zhongming .
BRIEFINGS IN BIOINFORMATICS, 2016, 17 (04) :642-656
[6]   Mutual exclusivity analysis identifies oncogenic network modules [J].
Ciriello, Giovanni ;
Cerami, Ethan ;
Sander, Chris ;
Schultz, Nikolaus .
GENOME RESEARCH, 2012, 22 (02) :398-406
[7]   Comprehensive molecular profiling of lung adenocarcinoma [J].
Collisson, Eric A. ;
Campbell, Joshua D. ;
Brooks, Angela N. ;
Berger, Alice H. ;
Lee, William ;
Chmielecki, Juliann ;
Beer, David G. ;
Cope, Leslie ;
Creighton, Chad J. ;
Danilova, Ludmila ;
Ding, Li ;
Getz, Gad ;
Hammerman, Peter S. ;
Hayes, D. Neil ;
Hernandez, Bryan ;
Herman, James G. ;
Heymach, John V. ;
Jurisica, Igor ;
Kucherlapati, Raju ;
Kwiatkowski, David ;
Ladanyi, Marc ;
Robertson, Gordon ;
Schultz, Nikolaus ;
Shen, Ronglai ;
Sinha, Rileen ;
Sougnez, Carrie ;
Tsao, Ming-Sound ;
Travis, William D. ;
Weinstein, John N. ;
Wigle, Dennis A. ;
Wilkerson, Matthew D. ;
Chu, Andy ;
Cherniack, Andrew D. ;
Hadjipanayis, Angela ;
Rosenberg, Mara ;
Weisenberger, Daniel J. ;
Laird, Peter W. ;
Radenbaugh, Amie ;
Ma, Singer ;
Stuart, Joshua M. ;
Byers, Lauren Averett ;
Baylin, Stephen B. ;
Govindan, Ramaswamy ;
Meyerson, Matthew ;
Rosenberg, Mara ;
Gabriel, Stacey B. ;
Cibulskis, Kristian ;
Sougnez, Carrie ;
Kim, Jaegil ;
Stewart, Chip .
NATURE, 2014, 511 (7511) :543-550
[8]  
Cotto Kelsy C, 2018, Nucleic Acids Res, V46, pD1068, DOI 10.1093/nar/gkx1143
[9]   MuSiC: Identifying mutational significance in cancer genomes [J].
Dees, Nathan D. ;
Zhang, Qunyuan ;
Kandoth, Cyriac ;
Wendl, Michael C. ;
Schierding, William ;
Koboldt, Daniel C. ;
Mooney, Thomas B. ;
Callaway, Matthew B. ;
Dooling, David ;
Mardis, Elaine R. ;
Wilson, Richard K. ;
Ding, Li .
GENOME RESEARCH, 2012, 22 (08) :1589-1598
[10]   Pleiotropic Effects of the Trichloroethylene-Associated P81S VHL Mutation on Metabolism, Apoptosis, and ATM-Mediated DNA Damage Response [J].
DeSimone, Michelle C. ;
Rathmell, W. Kimryn ;
Threadgill, David W. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2013, 105 (18) :1355-1364