Product set growth in groups and hyperbolic geometry

被引:6
作者
Delzant, Thomas [1 ,2 ]
Steenbock, Markus [3 ,4 ]
机构
[1] Univ Strasbourg, IRMA, F-67000 Strasbourg, France
[2] CNRS, F-67000 Strasbourg, France
[3] Univ Rennes, IRMAR, F-35000 Rennes, France
[4] CNRS, F-35000 Rennes, France
基金
奥地利科学基金会; 欧盟地平线“2020”;
关键词
20F65 (primary); 20F67; 20E08; 20F70 (secondary); ACYLINDRICAL ACCESSIBILITY; QUOTIENTS; SUBGROUPS;
D O I
10.1112/topo.12156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalising results of Razborov and Safin, and answering a question of Button, we prove that for every hyperbolic group there exists a constant alpha>0such that for every finite subsetUthat is not contained in a virtually cyclic subgroup|Un|>(alpha|U|)[(n+1)/2]. Similar estimates are established for groups acting acylindrically on trees or hyperbolic spaces.
引用
收藏
页码:1183 / 1215
页数:33
相关论文
共 25 条
  • [1] [Anonymous], 1990, Progress in Mathematics, DOI DOI 10.1007/978-1-4684-9167-8
  • [2] [Anonymous], 1991, Group theory from a geometrical viewpoint
  • [3] A lower bound on the growth of word hyperbolic groups
    Arzhantseva, GN
    Lysenok, IG
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 : 109 - 125
  • [4] Besson G., 2017, ARXIV PREPRINT ARXIV
  • [5] CONSTRUCTING GROUP ACTIONS ON QUASI-TREES AND APPLICATIONS TO MAPPING CLASS GROUPS
    Bestvina, Mladen
    Bromberg, Ken
    Fujiwara, Koji
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (122): : 1 - 64
  • [6] Tight geodesics in the curve complex
    Bowditch, Brian H.
    [J]. INVENTIONES MATHEMATICAE, 2008, 171 (02) : 281 - 300
  • [7] Breuillard E., 2018, ARXIV180400748
  • [8] The structure of approximate groups
    Breuillard, Emmanuel
    Green, Ben
    Tao, Terence
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2012, (116): : 115 - 221
  • [9] Explicit Helfgott type growth in free products and in limit groups
    Button, J. O.
    [J]. JOURNAL OF ALGEBRA, 2013, 389 : 61 - 77
  • [10] Product theorems in SL2 and SL3
    Chang, Mei-Chu
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2008, 7 (01) : 1 - 25