Fundamentals of artificial intelligence for ophthalmologists

被引:10
作者
Ahmad, Baseer U. [1 ,2 ]
Kim, Judy E. [1 ]
Rahimy, Ehsan [3 ]
机构
[1] Med Coll Wisconsin, Milwaukee, WI 53226 USA
[2] Marquette Univ, Milwaukee, WI 53233 USA
[3] Palo Alto Med Fdn, Palo Alto, CA USA
关键词
artificial intelligence; deep learning; gradient descent; image recognition; unsupervised learning; DEEP LEARNING ALGORITHM; DIABETIC-RETINOPATHY; AUTOMATED DETECTION; DIAGNOSTIC SYSTEM; RETINAL IMAGES; PREDICTION; DEGENERATION; VALIDATION;
D O I
10.1097/ICU.0000000000000679
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose of review As artificial intelligence continues to develop new applications in ophthalmic image recognition, we provide here an introduction for ophthalmologists and a primer on the mechanisms of deep learning systems. Recent findings Deep learning has lent itself to the automated interpretation of various retinal imaging modalities, including fundus photography and optical coherence tomography. Convolutional neural networks (CNN) represent the primary class of deep neural networks applied to these image analyses. These have been configured to aid in the detection of diabetes retinopathy, AMD, retinal detachment, glaucoma, and ROP, among other ocular disorders. Predictive models for retinal disease prognosis and treatment are also being validated. Summary Deep learning systems have begun to demonstrate a reliable level of diagnostic accuracy equal or better to human graders for narrow image recognition tasks. However, challenges regarding the use of deep learning systems in ophthalmology remain. These include trust of unsupervised learning systems and the limited ability to recognize broad ranges of disorders.
引用
收藏
页码:303 / 311
页数:9
相关论文
共 38 条
[1]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[2]   Automated Analysis of Retinal Images for Detection of Referable Diabetic Retinopathy [J].
Abramoff, Michael D. ;
Folk, James C. ;
Han, Dennis P. ;
Walker, Jonathan D. ;
Williams, David F. ;
Russell, Stephen R. ;
Massin, Pascale ;
Cochener, Beatrice ;
Gain, Philippe ;
Tang, Li ;
Lamard, Mathieu ;
Moga, Daniela C. ;
Quellec, Gwenole ;
Niemeijer, Meindert .
JAMA OPHTHALMOLOGY, 2013, 131 (03) :351-357
[3]   Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning [J].
Abramoff, Michael David ;
Lou, Yiyue ;
Erginay, Ali ;
Clarida, Warren ;
Amelon, Ryan ;
Folk, James C. ;
Niemeijer, Meindert .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5200-5206
[4]   Use of a Neural Net to Model the Impact of Optical Coherence Tomography Abnormalities on Vision in Age-related Macular Degeneration [J].
Aslam, Tariq M. ;
Zaki, Haider R. ;
Mahmood, Sajjad ;
Ali, Zaria C. ;
Ahmad, Nur A. ;
Thorell, Mariana R. ;
Balaskas, Konstantinos .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2018, 185 :94-100
[5]  
Bogunovic H., 2017, INVEST OPHTH VIS SCI, V58, pO141
[6]   Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach [J].
Bogunovic, Hrvoje ;
Waldstein, Sebastian M. ;
Schlegl, Thomas ;
Langs, Georg ;
Sadeghipour, Amir ;
Liu, Xuhui ;
Gerendas, Bianca S. ;
Osborne, Aaron ;
Schmidt-Erfurth, Ursula .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (07) :3240-3248
[7]   Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks [J].
Burlina, Philippe M. ;
Joshi, Neil ;
Pekala, Michael ;
Pacheco, Katia D. ;
Freund, David E. ;
Bressler, Neil M. .
JAMA OPHTHALMOLOGY, 2017, 135 (11) :1170-1176
[8]  
Coyner Aaron S, 2018, AMIA Annu Symp Proc, V2018, P1224
[9]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[10]   Machine Learning in Medicine [J].
Deo, Rahul C. .
CIRCULATION, 2015, 132 (20) :1920-1930