Crystal Structures of the Human RNA Demethylase Alkbh5 Reveal Basis for Substrate Recognition

被引:165
作者
Feng, Chong [1 ]
Liu, Yang [1 ]
Wang, Guoqiang [1 ]
Deng, Zengqin [1 ]
Zhang, Qi [1 ]
Wu, Wei [1 ]
Tong, Yufeng [3 ,4 ]
Cheng, Changmei [2 ]
Chen, Zhongzhou [1 ]
机构
[1] China Agr Univ, State Key Lab Agrobiotechnol, Beijing 100193, Peoples R China
[2] Tsinghua Univ, Dept Chem, Minist Educ, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China
[3] Univ Toronto, Struct Genom Consortium, Toronto, ON M5G 1L7, Canada
[4] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON M5G 1L7, Canada
基金
中国国家自然科学基金;
关键词
Crystal Structure; Drug Design; Enzyme Inhibitors; mRNA; RNA Modification; AlkB; Alkbh5; Substrate Recognition; m(6)A Demethylase; OXIDATIVE DEMETHYLATION; DNA-DAMAGE; MOLECULAR-REPLACEMENT; PROTEIN COMPLEXES; MESSENGER; REPAIR; MOUSE; GENE; N6-METHYLADENOSINE; 3-METHYLTHYMINE;
D O I
10.1074/jbc.M113.546168
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Human AlkB homolog 5 (Alkbh5) is an RNA demethylase that erases m(6)A modification. Results: Crystal structures of an enzymatically active Alkbh5 construct in complex with cofactors or small molecules were determined. Conclusion: Structure and activity analyses showed that Alkbh5 strongly prefers single-stranded oligos and small molecule inhibitors. Significance: The Alkbh5 structure reveals potential for structure-based design of selective inhibitors. N-6-Methylation of adenosine is the most ubiquitous and abundant modification of nucleoside in eukaryotic mRNA and long non-coding RNA. This modification plays an essential role in the regulation of mRNA translation and RNA metabolism. Recently, human AlkB homolog 5 (Alkbh5) and fat mass- and obesity-associated protein (FTO) were shown to erase this methyl modification on mRNA. Here, we report five high resolution crystal structures of the catalytic core of Alkbh5 in complex with different ligands. Compared with other AlkB proteins, Alkbh5 displays several unique structural features on top of the conserved double-stranded -helix fold typical of this protein family. Among the unique features, a distinct lid region of Alkbh5 plays a vital role in substrate recognition and catalysis. An unexpected disulfide bond between Cys-230 and Cys-267 is crucial for the selective binding of Alkbh5 to single-stranded RNA/DNA by bringing a flipping motif toward the central -helix fold. We generated a substrate binding model of Alkbh5 based on a demethylation activity assay of several structure-guided site-directed mutants. Crystallographic and biochemical studies using various analogs of -ketoglutarate revealed that the active site cavity of Alkbh5 is much smaller than that of FTO and preferentially binds small molecule inhibitors. Taken together, our findings provide a structural basis for understanding the substrate recognition specificity of Alkbh5 and offer a foundation for selective drug design against AlkB members.
引用
收藏
页码:11571 / 11583
页数:13
相关论文
共 49 条
[1]   Structural Basis for Inhibition of the Fat Mass and Obesity Associated Protein (FTO) [J].
Aik, WeiShen ;
Demetriades, Marina ;
Hamdan, Muhammad K. K. ;
Bagg, Eleanor. A. L. ;
Yeoh, Kar Kheng ;
Lejeune, Clarisse ;
Zhang, Zhihong ;
McDonough, Michael A. ;
Schofield, Christopher J. .
JOURNAL OF MEDICINAL CHEMISTRY, 2013, 56 (09) :3680-3688
[2]   Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases [J].
Aik, WeiShen ;
McDonough, Michael A. ;
Thalhammer, Armin ;
Chowdhury, Rasheduzzaman ;
Schofield, Christopher J. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2012, 22 (06) :691-700
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   The mRNA-Bound Proteome and Its Global Occupancy Profile on Protein-Coding Transcripts [J].
Baltz, Alexander G. ;
Munschauer, Mathias ;
Schwanhaeusser, Bjoern ;
Vasile, Alexandra ;
Murakawa, Yasuhiro ;
Schueler, Markus ;
Youngs, Noah ;
Penfold-Brown, Duncan ;
Drew, Kevin ;
Milek, Miha ;
Wyler, Emanuel ;
Bonneau, Richard ;
Selbach, Matthias ;
Dieterich, Christoph ;
Landthaler, Markus .
MOLECULAR CELL, 2012, 46 (05) :674-690
[5]   Version 1.2 of the Crystallography and NMR system [J].
Brunger, Axel T. .
NATURE PROTOCOLS, 2007, 2 (11) :2728-2733
[6]   IDENTIFICATION AND MAPPING OF N6-METHYLADENOSINE CONTAINING SEQUENCES IN SIMIAN VIRUS-40 RNA [J].
CANAANI, D ;
KAHANA, C ;
LAVI, S ;
GRONER, Y .
NUCLEIC ACIDS RESEARCH, 1979, 6 (08) :2879-2899
[7]   The RNA modification database, RNAMDB: 2011 update [J].
Cantara, William A. ;
Crain, Pamela F. ;
Rozenski, Jef ;
McCloskey, James A. ;
Harris, Kimberly A. ;
Zhang, Xiaonong ;
Vendeix, Franck A. P. ;
Fabris, Daniele ;
Agris, Paul F. .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D195-D201
[8]   Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions [J].
Choudhary, Chunaram ;
Kumar, Chanchal ;
Gnad, Florian ;
Nielsen, Michael L. ;
Rehman, Michael ;
Walther, Tobias C. ;
Olsen, Jesper V. ;
Mann, Matthias .
SCIENCE, 2009, 325 (5942) :834-840
[9]   The Buccaneer software for automated model building.: 1.: Tracing protein chains [J].
Cowtan, Kevin .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2006, 62 :1002-1011
[10]   Mutagenesis, genotoxicity, and repair of 1-methyladenine, 3-alkylcytosines, 1-methylguanine and 3-methylthymine, in alkB Escherichia coli [J].
Delaney, JC ;
Essigmann, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (39) :14051-14056