Evaluation of Small-Scale Deep Learning Architectures in Thai Speech Recognition

被引:0
作者
Kaewprateep, Jirayu [1 ]
Prom-on, Santitham [1 ]
机构
[1] King Mongkuts Univ Technol, Dept Comp Engn, Thonburi, Thailand
来源
2018 1ST INTERNATIONAL ECTI NORTHERN SECTION CONFERENCE ON ELECTRICAL, ELECTRONICS, COMPUTER AND TELECOMMUNICATIONS ENGINEERING (ECTI-NCON | 2018年
关键词
Thai speech recognition; deep learning; convolutional neural network; long short term memory network;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a performance evaluation study for small-scale deep learning neural network for Thai speech recognition task. Convolutional neural network and long short term memory networks were built with a relatively small size dataset and small constructs. The aim of this study is to determine which method would be suitable for a small-scale deep learning study. Relatively small speech corpus was used to build deep-learning neural networks with two different architectures, including convolutional neural network (CNN) model and long short term memory (LSTM) model. Models were evaluated using cross validation technique and compare to one another. The result shows that CNN outperformed LSTM for a small-scale deep learning. This suggests that with the limited dataset and small-scale architecture CNN is a more suitable choice in the speech recognition study.
引用
收藏
页码:60 / 64
页数:5
相关论文
共 50 条
  • [1] Evaluating deep learning architectures for Speech Emotion Recognition
    Fayek, Haytham M.
    Lech, Margaret
    Cavedon, Lawrence
    NEURAL NETWORKS, 2017, 92 : 60 - 68
  • [2] On Comparison of Deep Learning Architectures for Distant Speech Recognition
    Sustika, Rika
    Yuliani, Asri R.
    Zaenudin, Efendi
    Pardede, Hilman F.
    2017 2ND INTERNATIONAL CONFERENCES ON INFORMATION TECHNOLOGY, INFORMATION SYSTEMS AND ELECTRICAL ENGINEERING (ICITISEE): OPPORTUNITIES AND CHALLENGES ON BIG DATA FUTURE INNOVATION, 2017, : 17 - 21
  • [3] Fake Speech Recognition Using Deep Learning
    Camacho, Steven
    Maria Ballesteros, Dora
    Renza, Diego
    APPLIED COMPUTER SCIENCES IN ENGINEERING, WEA 2021, 2021, 1431 : 38 - 48
  • [4] Speech Command Recognition Using Deep Learning
    Ayache, Mohammad
    Kanaan, Hussien
    Kassir, Kawthar
    Kassir, Yasser
    2021 SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2021, : 24 - 29
  • [5] A large-scale evaluation framework for EEG deep learning architectures
    Heilmeyer, Felix A.
    Schirrmeister, Robin T.
    Fiederer, Lukas D. J.
    Voelker, Martin
    Behncke, Joos
    Ball, Tonio
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 1039 - 1045
  • [6] Handwritten Tifinagh Character Recognition using Deep Learning Architectures
    Sadouk, Lamyaa
    Gadi, Taoufiq
    Essoufi, El Hassan
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON INTERNET OF THINGS AND MACHINE LEARNING (IML'17), 2017,
  • [7] Lightweight Deep Learning Framework for Speech Emotion Recognition
    Akinpelu, Samson
    Viriri, Serestina
    Adegun, Adekanmi
    IEEE ACCESS, 2023, 11 : 77086 - 77098
  • [8] Efficient Feature-Aware Hybrid Model of Deep Learning Architectures for Speech Emotion Recognition
    Ezz-Eldin, Mai
    Khalaf, Ashraf A. M.
    Hamed, Hesham F. A.
    Hussein, Aziza, I
    IEEE ACCESS, 2021, 9 : 19999 - 20011
  • [9] Deep Learning Architectures for Underwater Target Recognition
    Kamal, Suraj
    Mohammed, Shameer K.
    Pillai, P. R. Saseendran
    Supriya, M. H.
    2013 OCEAN ELECTRONICS (SYMPOL), 2013, : 48 - 54
  • [10] Speech Recognition using Deep Learning
    Lakkhanawannakun, Phoemporn
    Noyunsan, Chaluemwut
    2019 34TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2019), 2019, : 514 - 517