Co-pyrolysis-catalytic steam reforming of cellulose/lignin with polyethylene/polystyrene for the production of hydrogen

被引:19
作者
Akubo, Kaltume [1 ]
Nahil, Mohamad Anas [1 ]
Williams, Paul T. [1 ]
机构
[1] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, England
基金
英国工程与自然科学研究理事会;
关键词
Biomass; Plastics; Catalysis; Hydrogen; Cellulose; Lignin; RICH GAS-PRODUCTION; SYNGAS PRODUCTION; BIOMASS GASIFICATION; WASTE PLASTICS; MOLYBDENUM; METHANE; HEMICELLULOSE; COMPONENTS; MIXTURES; LIGNIN;
D O I
10.1007/s42768-020-00047-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Co-pyrolysis of biomass biopolymers (lignin and cellulose) with plastic wastes (polyethylene and polystyrene) coupled with downstream catalytic steam reforming of the pyrolysis gases for the production of a hydrogen-rich syngas is reported. The catalyst used was 10 wt.% nickel supported on MCM-41. The influence of the process parameters of temperature and the steam flow rate was examined to optimize hydrogen and syngas production. The cellulose/plastic mixtures produced higher hydrogen yields compared with the lignin/plastic mixtures. However, the impact of raising the catalytic steam reforming temperature from 750 to 850 degrees C was more marked for lignin addition. For example, the hydrogen yield for cellulose/polyethylene at a catalyst temperature of 750 degrees C was 50.3 mmol g(-1) and increased to 60.0 mmol g(-1) at a catalyst temperature of 850 degrees C. However, for the lignin/polyethylene mixture, the hydrogen yield increased from 25.0 to 50.0 mmol g(-1) representing a twofold increase in hydrogen yield. The greater influence on hydrogen and yield for the lignin/plastic mixtures compared to the cellulose/plastic mixtures is suggested to be due to the overlapping thermal degradation profiles of lignin and the polyethylene and polystyrene. The input of steam to the catalyst reactor produced catalytic steam reforming conditions and a marked increase in hydrogen yield. The influence of increased steam input to the process was greater for the lignin/plastic mixtures compared to the cellulose/plastic mixtures, again linked to the overlapping thermal degradation profiles of the lignin and the plastics. A comparison of the Ni/MCM-41 catalyst with Ni/Al2O3 and Ni/Y-zeolite-supported catalysts showed that the Ni/Al2O3 catalyst gave higher yields of hydrogen and syngas.
引用
收藏
页码:177 / 191
页数:15
相关论文
共 47 条
[1]   Characteristics of syngas from co-gasification of polyethylene and woodchips [J].
Ahmed, I. I. ;
Nipattummakul, N. ;
Gupta, A. K. .
APPLIED ENERGY, 2011, 88 (01) :165-174
[2]   Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas [J].
Akubo, Kaltume ;
Nahil, Mohamad Anas ;
Williams, Paul T. .
JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (06) :1987-1996
[3]   Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification [J].
Alvarez, Jon ;
Kumagai, Shogo ;
Wu, Chunfei ;
Yoshioka, Toshiaki ;
Bilbao, Javier ;
Olazar, Martin ;
Williams, Paul T. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (21) :10883-10891
[4]  
[Anonymous], 2019, The Future of Hydrogen: Seizing today's opportunities, DOI DOI 10.1787/1-0514C4-EN
[5]   Hydrogen-rich gas production by continuous pyrolysis and in-line catalytic reforming of pine wood waste and HDPE mixtures [J].
Arregi, Aitor ;
Amutio, Maider ;
Lopez, Gartzen ;
Artetxe, Maite ;
Alvarez, Jon ;
Bilbao, Javier ;
Olazar, Martin .
ENERGY CONVERSION AND MANAGEMENT, 2017, 136 :192-201
[6]   Hydrogen from biomass - Present scenario and future prospects [J].
Balat, Havva ;
Kirtay, Elif .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (14) :7416-7426
[7]   Valorisation of different waste plastics by pyrolysis and in-line catalytic steam reforming for hydrogen production [J].
Barbarias, Itsaso ;
Lopez, Gartzen ;
Artetxe, Maite ;
Arregi, Aitor ;
Bilbao, Javier ;
Olazar, Martin .
ENERGY CONVERSION AND MANAGEMENT, 2018, 156 :575-584
[8]   Influence of Ni/SiO2 catalyst preparation methods on hydrogen production from the pyrolysis/reforming of refuse derived fuel [J].
Blanco, Paula H. ;
Wu, Chunfei ;
Williams, Paul T. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (11) :5723-5732
[9]   Co-pyrogasification of Plastics and Biomass, a Review [J].
Block, C. ;
Ephraim, A. ;
Weiss-Hortala, E. ;
Minh, D. Pham ;
Nzihou, A. ;
Vandecasteele, C. .
WASTE AND BIOMASS VALORIZATION, 2019, 10 (03) :483-509
[10]   Synergistic effects in steam gasification of combined biomass and plastic waste mixtures [J].
Burra, K. G. ;
Gupta, A. K. .
APPLIED ENERGY, 2018, 211 :230-236