Multiscale Graphene-Based Materials for Applications in Sodium Ion Batteries

被引:305
作者
Zhang, Yan [1 ,2 ]
Xia, Xinhui [1 ,2 ]
Liu, Bo [1 ,2 ]
Deng, Shengjue [1 ,2 ]
Xie, Dong [3 ]
Liu, Qi [4 ]
Wang, Yadong [5 ]
Wu, Jianbo [6 ]
Wang, Xiuli [1 ,2 ]
Tu, Jiangping [1 ,2 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Dongguan Univ Technol, Sch Environm & Civil Engn, Guangdong Engn & Technol Res Ctr Adv Nanomat, Dongguan 523808, Peoples R China
[4] City Univ Hong Kong, Dept Phys, Kowloon, Hong Kong 999077, Peoples R China
[5] Nanyang Polytech, Sch Engn, Singapore 569830, Singapore
[6] Taizhou Univ, Zhejiang Prov Key Lab Cutting Tools, Taizhou 318000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
anodes; cathodes; electrochemical energy storage; graphene; sodium ion batteries; HIGH-PERFORMANCE ANODE; CHEMICAL-VAPOR-DEPOSITION; HIGH-RATE CAPABILITY; N-DOPED GRAPHENE; SUPERIOR CATHODE MATERIAL; HIGH-VOLTAGE CATHODE; OXIDE COMPOSITE; LITHIUM-ION; ELECTROCHEMICAL PERFORMANCE; VERTICAL GRAPHENE;
D O I
10.1002/aenm.201803342
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Scrupulous design and smart hybridization of bespoke electrode materials are of great importance for the advancement of sodium ion batteries (SIBs). Graphene-based nanocomposites are regarded as one of the most promising electrode materials for SIBs due to the outstanding physicochemical properties of graphene and positive synergetic effects between graphene and the introduced active phase. In this review, the recent progress in graphene-based electrode materials for SIBs with an emphasis on the electrode design principle, different preparation methods, and mechanism, characterization, synergistic effects, and their detailed electrochemical performance is summarized. General design rules for fabrication of advanced SIB materials are also proposed. Additionally, the merits and drawbacks of different fabrication methods for graphene-based materials are briefly discussed and summarized. Furthermore, multiscale forms of graphene are evaluated to optimize electrochemical performance of SIBs, ranging from 0D graphene quantum dots, 2D vertical graphene and reduced graphene oxide sheets, to 3D graphene aerogel and graphene foam networks. To conclude, the challenges and future perspectives on the development of graphene-based materials for SIBs are also presented.
引用
收藏
页数:35
相关论文
共 256 条
[1]   Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries [J].
An, Haoran ;
Li, Yu ;
Gao, Yi ;
Cao, Chen ;
Han, Junkai ;
Feng, Yiyu ;
Feng, Wei .
CARBON, 2017, 116 :338-346
[2]  
[Anonymous], J AM CHEM SOC
[3]  
[Anonymous], 2018, ADV ENERGY MATER
[4]  
[Anonymous], 2018, ADV ENERGY MATER
[5]  
[Anonymous], 2015, J PHYS CHEM LETT
[6]   A review of carbon materials and their composites with alloy metals for sodium ion battery anodes [J].
Balogun, Muhammad-Sadeeq ;
Luo, Yang ;
Qiu, Weitao ;
Liu, Peng ;
Tong, Yexiang .
CARBON, 2016, 98 :162-178
[7]   Emerging energy and environmental applications of vertically-oriented graphenes [J].
Bo, Zheng ;
Mao, Shun ;
Han, Zhao Jun ;
Cen, Kefa ;
Chen, Junhong ;
Ostrikov, Kostya .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (08) :2108-2121
[8]   Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets [J].
Bo, Zheng ;
Yang, Yong ;
Chen, Junhong ;
Yu, Kehan ;
Yan, Jianhua ;
Cen, Kefa .
NANOSCALE, 2013, 5 (12) :5180-5204
[9]   Methods of graphite exfoliation [J].
Cai, Minzhen ;
Thorpe, Daniel ;
Adamson, Douglas H. ;
Schniepp, Hannes C. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (48) :24992-25002
[10]   Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode [J].
Cai, Yangsheng ;
Liu, Fei ;
Luo, Zhigao ;
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ENERGY STORAGE MATERIALS, 2018, 13 :168-174