From Quantum Quasi-Shuffle Algebras to Braided Rota-Baxter Algebras

被引:5
作者
Jian, Run-Qiang [1 ]
机构
[1] Dongguan Univ Technol, Sch Comp Sci, Songshan Lake 523808, Dongguan, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum quasi-shuffle algebra; Rota-Baxter algebra; tridendriform algebra; braided Rota-Baxter algebra; quantum multi-brace algebra; FIELD THEORY; HOPF-ALGEBRAS; RENORMALIZATION; PRODUCTS;
D O I
10.1007/s11005-013-0619-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this letter, we use quantum quasi-shuffle algebras to construct Rota-Baxter algebras, as well as tridendriform algebras. We also propose the notion of braided Rota-Baxter algebras, the relevant object of Rota-Baxter algebras in a braided tensor category. Examples of such new algebras are provided using quantum multi-brace algebras in a category of Yetter-Drinfeld modules.
引用
收藏
页码:851 / 863
页数:13
相关论文
共 25 条