Higher-order computational model for coded aperture spectral imaging

被引:100
作者
Arguello, Henry [1 ,2 ]
Rueda, Hoover [1 ,2 ]
Wu, Yuehao [1 ]
Prather, Dennis W. [1 ]
Arce, Gonzalo R. [1 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
[2] Univ Ind Santander, Dept Comp & Informat Engn, Bucaramanga 680002, Colombia
基金
美国国家科学基金会;
关键词
DESIGN;
D O I
10.1364/AO.52.000D12
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coded aperture snapshot spectral imaging systems (CASSI) sense the three-dimensional spatio-spectral information of a scene using a single two-dimensional focal plane array snapshot. The compressive CASSI measurements are often modeled as the summation of coded and shifted versions of the spectral voxels of the underlying scene. This coarse approximation of the analog CASSI sensing phenomena is then compensated by calibration preprocessing prior to signal reconstruction. This paper develops a higher-order precision model for the optical sensing in CASSI that includes a more accurate discretization of the underlying signals, leading to image reconstructions less dependent on calibration. Further, the higher-order model results in improved image quality reconstruction of the underlying scene than that achieved by the traditional model. The proposed higher precision computational model is also more suitable for reconfigurable multiframe CASSI systems where multiple coded apertures are used sequentially to capture the hyperspectral scene. Several simulations and experimental measurements demonstrate the benefits of the discretization model. (C) 2013 Optical Society of America
引用
收藏
页码:D12 / D21
页数:10
相关论文
共 15 条
  • [1] Arguello H., 2011, IM SYST APPL OSA OP
  • [2] Arguello H., 2012, APPL OPT UNPUB NOV
  • [3] Arguello H., 2010, EUR SIGN PROC C EUSI
  • [4] Arguello H., 2010, DIGITAL HOLOGRAPHY 3
  • [5] Rank Minimization Code Aperture Design for Spectrally Selective Compressive Imaging
    Arguello, Henry
    Arce, Gonzalo R.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (03) : 941 - 954
  • [6] Code aperture optimization for spectrally agile compressive imaging
    Arguello, Henry
    Arce, Gonzalo R.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2011, 28 (11) : 2400 - 2413
  • [7] Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems
    Figueiredo, Mario A. T.
    Nowak, Robert D.
    Wright, Stephen J.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) : 586 - 597
  • [8] Multiframe image estimation for coded aperture snapshot spectral imagers
    Kittle, David
    Choi, Kerkil
    Wagadarikar, Ashwin
    Brady, David J.
    [J]. APPLIED OPTICS, 2010, 49 (36) : 6824 - 6833
  • [9] Ramirez A., 2012, COMPUT OPT SENS IMAG
  • [10] Ramirez A., 2012, IEEE T GEO UNPUB NOV