Sets with small sumset and rectification

被引:48
作者
Green, B
Ruzsa, IZ
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
关键词
D O I
10.1017/S0024609305018102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the extent to which sets A subset of Z/NZ, AF prime, resemble sets of integers from the additive point of view ('up to Freiman isomorphism'). We give a direct proof of a result of Freiman, namely that if vertical bar A + A vertical bar <= K vertical bar A vertical bar and vertical bar A vertical bar < c(K)N, then A is Freiman isomorphic to a set of integers. Because we avoid appealing to 2 Freiman's structure theorem, we obtain a reasonable bound: we can take c(K) >= (32K)(-12K2). As a byproduct of our argument we obtain a sharpening of the second author's result on sets with small sumset in torsion groups. For example, if A subset of F-2(n), and if vertical bar A + A vertical bar <= K vertical bar A vertical bar, then A is contained in a coset of a subspace of size no more than K(2)2(2K2-2)vertical bar A vertical bar.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 16 条
[1]  
Bilu Y, 1999, ASTERISQUE, P77
[2]   Rectification principles in additive number theory [J].
Bilu, YF ;
Lev, VF ;
Ruzsa, IZ .
DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) :343-353
[3]   A polynomial bound in Freiman's theorem [J].
Chang, MC .
DUKE MATHEMATICAL JOURNAL, 2002, 113 (03) :399-419
[4]   CYCLIC SPACES FOR GRASSMANN DERIVATIVES AND ADDITIVE THEORY [J].
DASILVA, JAD ;
HAMIDOUNE, YO .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 :140-146
[5]   On small sumsets in (Z/2Z)n [J].
Deshouillers, JM ;
Hennecart, F ;
Plagne, A .
COMBINATORICA, 2004, 24 (01) :53-68
[6]  
ERDOS P, 1964, ACTA ARITH, V9, P149
[7]  
Freiman G.A., 1973, Foundations of a structural theory of set addition
[8]  
Lev V. F., 2005, INTEGERS, V5
[9]  
Ruzsa I., 1976, COMBINATORICS, VII
[10]  
Ruzsa Imre Z., 1978, COMBINATORICS PROC 5, V2, P933