LARGE SCALE CROP CLASSIFICATION USING GOOGLE EARTH ENGINE PLATFORM

被引:0
|
作者
Shelestov, Andrii [1 ,2 ]
Lavreniuk, Mykola [1 ,2 ]
Kussul, Nataliia [1 ,2 ]
Novikov, Alexei [2 ]
Skakun, Sergii [3 ,4 ]
机构
[1] SSAU, NASU, Space Res Inst, Kiev, Ukraine
[2] Natl Tech Univ Ukraine, Igor Sikorsky Kiev Polytech Inst, Kiev, Ukraine
[3] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[4] NASA, Goddard Space Flight Ctr, Code 619, Greenbelt, MD USA
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
Google Earth Engine; big data; classification; optical satellite imagery; image processing; SATELLITE DATA;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
For many applied problems in agricultural monitoring and food security it is important to provide reliable crop classification maps in national or global scale. Large amount of satellite data for large scale crop mapping generate a "Big Data problem. The main idea of this paper was comparison of pixel-based approaches to crop mapping in Ukraine and exploring efficiency of the Google Earth Engine (GEE) cloud platform for solving "Big Data" problem and providing high resolution crop classification map for large territory. The study is carried out for the Joint Experiment of Crop Assessment and Monitoring (JECAM) test site in Ukraine covering the Kyiv region (North of Ukraine) in 2013. We found that Google Earth Engine (GEE) provided very good performance in enabling access to remote sensing products through the cloud platform, but our own approach based on ensemble of neural networks outperformed SVM, decision tree and random forest classifiers that are available in GEE.
引用
收藏
页码:3696 / 3699
页数:4
相关论文
共 50 条
  • [1] Comparison of common classification strategies for large-scale vegetation mapping over the Google Earth Engine platform
    Del Valle, Tomas Martin
    Jiang, Ping
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 115
  • [2] Detection of Large-Scale Floods Using Google Earth Engine and Google Colab
    Johary, Rosa
    Revillion, Christophe
    Catry, Thibault
    Alexandre, Cyprien
    Mouquet, Pascal
    Rakotoniaina, Solofoarisoa
    Pennober, Gwenaelle
    Rakotondraompiana, Solofo
    REMOTE SENSING, 2023, 15 (22)
  • [3] LARGE SCALE ASSESSMENT OF FREE GLOBAL DEMS THROUGH THE GOOGLE EARTH ENGINE PLATFORM
    Ravanelli, Roberta
    Nascetti, Andrea
    Crespi, Mattia
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5242 - 5245
  • [4] Sentinel SAR-optical fusion for improving in-season wheat crop mapping at a large scale using machine learning and the Google Earth engine platform
    Louis Evence Zoungrana
    Meriem Barbouchi
    Wael Toukabri
    Mohamedou Ould Babasy
    Nabil Ben Khatra
    Mohamed Annabi
    Haithem Bahri
    Applied Geomatics, 2024, 16 : 147 - 160
  • [5] Sentinel SAR-optical fusion for improving in-season wheat crop mapping at a large scale using machine learning and the Google Earth engine platform
    Zoungrana, Louis Evence
    Barbouchi, Meriem
    Toukabri, Wael
    Babasy, Mohamedou Ould
    Khatra, Nabil Ben
    Annabi, Mohamed
    Bahri, Haithem
    APPLIED GEOMATICS, 2024, 16 (01) : 147 - 160
  • [6] Large-Scale Crop Mapping From Multisource Remote Sensing Images in Google Earth Engine
    Liu, Xinkai
    Zhai, Han
    Shen, Yonglin
    Lou, Benke
    Jiang, Changmin
    Li, Tianqi
    Hussain, Sayed Bilal
    Shen, Guoling
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 414 - 427
  • [7] Classification of Indian cities using Google Earth Engine
    Agarwal, Shivani
    Nagendra, Harini
    JOURNAL OF LAND USE SCIENCE, 2019, 14 (4-6) : 425 - 439
  • [8] FREE GLOBAL DSM ASSESSMENT ON LARGE SCALE AREAS EXPLOITING THE POTENTIALITIES OF THE INNOVATIVE GOOGLE EARTH ENGINE PLATFORM
    Nascetti, A.
    Di Rita, M.
    Ravanelli, R.
    Amicuzi, M.
    Esposito, S.
    Crespi, M.
    ISPRS HANNOVER WORKSHOP: HRIGI 17 - CMRT 17 - ISA 17 - EUROCOW 17, 2017, 42-1 (W1): : 627 - 633
  • [9] CLOUD DETECTION ON THE GOOGLE EARTH ENGINE PLATFORM
    Mateo-Garcia, Gonzalo
    Munoz-Mari, Jordi
    Gomez-Chova, Luis
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1942 - 1945
  • [10] Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping
    Shelestov, Andrii
    Lavreniuk, Mykola
    Kussul, Nataliia
    Novikov, Alexei
    Skakun, Sergii
    FRONTIERS IN EARTH SCIENCE, 2017, 5 : 1 - 10