Assessing multiscale permutation entropy for short electroencephalogram recordings

被引:4
作者
Choi, Young-Seok [1 ]
Hyun, Kwangmin [2 ]
Choi, Jae-Yeon [3 ]
机构
[1] Kwangwoon Univ, Dept Elect & Commun Engn, Seoul, South Korea
[2] Gangneung Wonju Natl Univ, Dept Informat & Telecommun Engn, Wonju, South Korea
[3] Namseoul Univ, Dept Informat & Commun Engn, Cheonan, South Korea
来源
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS | 2016年 / 19卷 / 04期
关键词
Electroencephalogram; Multiscale permutation entropy; Epilepsy; Seizure; APPROXIMATE ENTROPY; EEG RECORDINGS; DYNAMICS; PATTERNS; DISEASE; STATES;
D O I
10.1007/s10586-016-0648-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electroencephalogram (EEG) has been a standard tool to monitor the status of the brain. For a quantification of EEG recordings, permutation entropy (PE) has been of interest due to simplicity and robustness to noise. A multiscale extension of PE, called multiscale PE (MPE), has been promising for describing the dynamical characteristics of EEG over multiple temporal scales. However, an imprecise estimation of MPE at large scales limits its application for analyzing of short EEG recordings. Here, with the aim of estimating MPE accurately, a modified MPE (MMPE) measure is presented. The proposed MMPE consists of two processes: (1) computation of PE values of all possible coarse-grained EEG time-series, (2) averaging of PE values at each scale. Through simulations with two synthetic signals, i.e., white and 1 / f noises, MMPE proves its capability over MPE in terms of accuracy. Experimental results using the actual EEG recordings indicate that MMPE is an improved quantifier in the sense that MMPE reduces variance of entropy estimation in comparison with MPE.
引用
收藏
页码:2305 / 2314
页数:10
相关论文
共 24 条
[1]   True and false forbidden patterns in deterministic and random dynamics [J].
Amigo, J. M. ;
Zambrano, S. ;
Sanjuan, M. A. F. .
EPL, 2007, 79 (05)
[2]   Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J].
Andrzejak, RG ;
Lehnertz, K ;
Mormann, F ;
Rieke, C ;
David, P ;
Elger, CE .
PHYSICAL REVIEW E, 2001, 64 (06) :8-061907
[3]  
Aziz W., 2005, 9 INT MULT C 2005 IE
[4]   Permutation entropy: A natural complexity measure for time series [J].
Bandt, C ;
Pompe, B .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4
[5]   Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study [J].
Bruzzo, Angela A. ;
Gesierich, Benno ;
Santi, Maurizio ;
Tassinari, Carlo Alberto ;
Birbaumer, Niels ;
Rubboli, Guido .
NEUROLOGICAL SCIENCES, 2008, 29 (01) :3-9
[6]   Towards energy-efficient parallel analysis of neural signals [J].
Chen, Dan ;
Lu, Dongcuan ;
Tian, Mingwei ;
He, Shan ;
Wang, Shuaiting ;
Tian, Jian ;
Cai, Chang ;
Li, Xiaoli .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2013, 16 (01) :39-53
[7]   Improvement of speech signal extraction method using detection filter of energy spectrum entropy [J].
Chung, Kyungyong ;
Oh, SangYeob .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2015, 18 (02) :629-635
[8]   Multiscale entropy analysis of biological signals [J].
Costa, M ;
Goldberger, AL ;
Peng, CK .
PHYSICAL REVIEW E, 2005, 71 (02)
[9]   Multiscale entropy analysis of complex physiologic time series [J].
Costa, M ;
Goldberger, AL ;
Peng, CK .
PHYSICAL REVIEW LETTERS, 2002, 89 (06) :1-068102
[10]   Continuous EEG in therapeutic hypothermia after cardiac arrest Prognostic and clinical value [J].
Crepeau, Amy Z. ;
Rabinstein, Alejandro A. ;
Fugate, Jennifer E. ;
Mandrekar, Jay ;
Wijdicks, Eelco F. ;
White, Roger D. ;
Britton, Jeffrey W. .
NEUROLOGY, 2013, 80 (04) :339-344