On-Site Quantification and Infection Risk Assessment of Airborne SARS-CoV-2 Virus Via a Nanoplasmonic Bioaerosol Sensing System in Healthcare Settings

被引:12
|
作者
Qiu, Guangyu [1 ,2 ,3 ]
Spillmann, Martin [1 ]
Tang, Jiukai [1 ,2 ]
Zhao, Yi-Bo [1 ,2 ]
Tao, Yile [1 ]
Zhang, Xiaole [1 ]
Geschwindner, Heike [4 ]
Saleh, Lanja [5 ]
Zingg, Walter [6 ]
Wang, Jing [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Inst Environm Engn, CH-8093 Zurich, Switzerland
[2] Swiss Fed Labs Mat Sci & Technol, Lab Adv Analyt Technol, Empa, CH-8600 Dubendorf, Switzerland
[3] Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai, Peoples R China
[4] Senior Hlth Ctr City Zurich, Nursing Res & Sci, Zurich, Switzerland
[5] Univ Zurich, Univ Hosp Zurich, Inst Clin Chem, CH-8091 Zurich, Switzerland
[6] Univ Hosp Zurich, Clin Infect Dis & Hosp Hyg, CH-8091 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
airborne transmission; bioaerosols; biosensors; coronavirus; COVID-19; plasmonics; risk assessment;
D O I
10.1002/advs.202204774
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
On-site quantification and early-stage infection risk assessment of airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high spatiotemporal resolution is a promising approach for mitigating the spread of coronavirus disease 2019 (COVID-19) pandemic and informing life-saving decisions. Here, a condensation (hygroscopic growth)-assisted bioaerosol collection and plasmonic photothermal sensing (CAPS) system for on-site quantitative risk analysis of SARS-CoV-2 virus-laden aerosols is presented. The CAPS system provided rapid thermoplasmonic biosensing results after an aerosol-to-hydrosol sampling process in COVID-19-related environments including a hospital and a nursing home. The detection limit reached 0.25 copies/mu L in the complex aerosol background without further purification. More importantly, the CAPS system enabled direct measurement of the SARS-CoV-2 virus exposures with high spatiotemporal resolution. Measurement and feedback of the results to healthcare workers and patients via a QR-code are completed within two hours. Based on a dose-response mu model, it is used the plasmonic biosensing signal to calculate probabilities of SARS-CoV-2 infection risk and estimate maximum exposure durations to an acceptable risk threshold in different environmental settings.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Risk quantification for SARS-CoV-2 infection through airborne transmission in university settings (Sept, 10.1080/15459624.2021.1985725, 2021)
    Ambatipudi, Mythri
    Gonzalez, Paola Carrillo
    Tasnim, Kazi
    Daigle, Jordan T.
    Kulyk, Taisa
    Jeffreys, Nicholas
    Sule, Nishant
    Trevino, Rafael
    He, Emily M.
    Mooney, David J.
    Koh, Esther
    JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE, 2021, 18 (12) : 604 - 604
  • [2] Assessment of SARS-CoV-2 airborne infection transmission risk in public buses
    Bertone, M.
    Mikszewski, A.
    Stabile, L.
    Riccio, G.
    Cortellessa, G.
    d'Ambrosio, F. R.
    Papa, V.
    Morawska, L.
    Buonanno, G.
    GEOSCIENCE FRONTIERS, 2022, 13 (06)
  • [3] Workplace interventions to reduce the risk of SARS-CoV-2 infection outside of healthcare settings
    Pizarro, Ana Beatriz
    Persad, Emma
    Durao, Solange
    Nussbaumer-Streit, Barbara
    Engela-Volker, Jean S.
    McElvenny, Damien
    Rhodes, Sarah
    Stocking, Katie
    Fletcher, Tony
    Martin, Craig
    Noertjojo, Kukuh
    Sampson, Olivia
    Verbeek, Jos H.
    Jorgensen, Karsten Juhl
    Bruschettini, Matteo
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2022, (05):
  • [4] Workplace interventions to reduce the risk of SARS-CoV-2 infection outside of healthcare settings
    Constantin, Alexandru Marian
    Noertjojo, Kukuh
    Sommer, Isolde
    Pizarro, Ana Beatriz
    Persad, Emma
    Durao, Solange
    Nussbaumer-Streit, Barbara
    McElvenny, Damien M.
    Rhodes, Sarah
    Martin, Craig
    Sampson, Olivia
    Jorgensen, Karsten Juhl
    Bruschettini, Matteo
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2024, (04):
  • [5] Protections against the Risk of Airborne SARS-CoV-2 Infection
    McDonald, Clement J.
    MSYSTEMS, 2020, 5 (03)
  • [6] Bioaerosol distribution characteristics and potential SARS-CoV-2 infection risk in a multi-compartment dental clinic
    Liu, Zhijian
    Yao, Guangpeng
    Li, Yabin
    Huang, Zhenzhe
    Jiang, Chuan
    He, Junzhou
    Wu, Minnan
    Liu, Jia
    Liu, Haiyang
    BUILDING AND ENVIRONMENT, 2022, 225
  • [7] Modelling airborne transmission of SARS-CoV-2 using CARA: risk assessment for enclosed spaces
    Henriques, Andre
    Mounet, Nicolas
    Aleixo, Luis
    Elson, Philip
    Devine, James
    Azzopardi, Gabriella
    Andreini, Marco
    Rognlien, Markus
    Tarocco, Nicola
    Tang, Julian
    INTERFACE FOCUS, 2022, 12 (02)
  • [8] Assessment of Autonomic Nervous System Dysfunction in the Early Phase of Infection With SARS-CoV-2 Virus
    Milovanovic, Branislav
    Djajic, Vlado
    Bajic, Dragana
    Djokovic, Aleksandra
    Krajnovic, Tatjana
    Jovanovic, Sladjana
    Verhaz, Antonija
    Kovacevic, Pedja
    Ostojic, Miodrag
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [9] Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications
    Buonanno, G.
    Morawska, L.
    Stabile, L.
    ENVIRONMENT INTERNATIONAL, 2020, 145
  • [10] SARS-CoV-2 infection: advocacy for training and social distancing in healthcare settings
    Gagneux-Brunon, A.
    Pelissier, C.
    Gagnaire, J.
    Pillet, S.
    Pozzetto, B.
    Botelho-Nevers, E.
    Berthelot, P.
    JOURNAL OF HOSPITAL INFECTION, 2020, 106 (03) : 610 - 612