Distributed Adaptive Learning of Graph Processes via In-Network Subspace Projections

被引:0
作者
Di Lorenzo, Paolo [1 ]
Barbarossa, Sergio [1 ]
Sardellitti, Stefania [1 ]
机构
[1] Sapienza Univ Rome, Dept Informat Engn Elect & Telecommun, Via Eudossiana 18, I-00184 Rome, Italy
来源
CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS | 2019年
关键词
Graph signal processing; signal recovery; sampling; distributed subspace projections; SIGNAL; ALGORITHM;
D O I
10.1109/ieeeconf44664.2019.9048992
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce a novel adaptive method for distributed recovery of graph processes, which are observed over a dynamic set of vertices. The proposed algorithm hinges on proximal gradient optimization techniques, while leveraging in-network projections as a mechanism to enforce graph bandwidth constraints in a cooperative and distributed fashion, and thresholding operators to identify anomalous sparse components hidden in the signals. The theoretical analysis illustrates the mean-square stability of the proposed adaptive method. Finally, numerical tests on synthetic and real data assess the performance of the proposed distributed strategy for adaptive learning of graph processes.
引用
收藏
页码:41 / 45
页数:5
相关论文
共 21 条
[1]   DISTRIBUTED SIGNAL SUBSPACE PROJECTION ALGORITHMS WITH MAXIMUM CONVERGENCE RATE FOR SENSOR NETWORKS WITH TOPOLOGICAL CONSTRAINTS [J].
Barbarossa, S. ;
Scutari, G. ;
Battisti, T. .
2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, :2893-2896
[2]   Greedy Sampling of Graph Signals [J].
Chamon, Luiz F. O. ;
Ribeiro, Alejandro .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (01) :34-47
[3]  
Chen SH, 2015, INT CONF ACOUST SPEE, P3731, DOI 10.1109/ICASSP.2015.7178668
[4]   Discrete Signal Processing on Graphs: Sampling Theory [J].
Chen, Siheng ;
Varma, Rohan ;
Sandryhaila, Aliaksei ;
Kovacevic, Jelena .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (24) :6510-6523
[5]   Advances in Distributed Graph Filtering [J].
Coutino, Mario ;
Isufi, Elvin ;
Leus, Geert .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (09) :2320-2333
[6]  
Di Lorenzo P, 2018, COOPERATIVE AND GRAPH SIGNAL PROCESSING: PRINCIPLES AND APPLICATIONS, P261, DOI 10.1016/B978-0-12-813677-5.00009-2
[7]  
Di Lorenzo P, 2019, INT CONF ACOUST SPEE, P5242, DOI [10.1109/icassp.2019.8682719, 10.1109/ICASSP.2019.8682719]
[8]   Distributed Adaptive Learning of Graph Signals [J].
Di Lorenzo, Paolo ;
Banelli, Paolo ;
Barbarossa, Sergio ;
Sardellitti, Stefania .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (16) :4193-4208
[9]   Dynamic Anomalography: Tracking Network Anomalies Via Sparsity and Low Rank [J].
Mardani, Morteza ;
Mateos, Gonzalo ;
Giannakis, Georgios B. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2013, 7 (01) :50-66
[10]  
Nassif R, 2019, INT CONF ACOUST SPEE, P5232, DOI 10.1109/ICASSP.2019.8683028