Quantized electric multipole insulators

被引:1619
作者
Benalcazar, Wladimir A. [1 ,2 ]
Bernevig, B. Andrei [3 ]
Hughes, Taylor L. [1 ,2 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Inst Condensed Matter Theory, Urbana, IL 61801 USA
[3] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
WANNIER FUNCTIONS; ENERGY-BANDS; POLARIZATION; SOLIDS; MODEL;
D O I
10.1126/science.aah6442
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Berry phase provides a modern formulation of electric polarization in crystals. We extend this concept to higher electricmultipole moments and determine the necessary conditions and minimal models for which the quadrupole and octupole moments are topologically quantized electromagnetic observables. Such systems exhibit gapped boundaries that are themselves lower-dimensional topological phases. Furthermore, they host topologically protected corner states carrying fractional charge, exhibiting fractionalization at the boundary of the boundary. To characterize these insulating phases of matter, we introduce a paradigm in which "nested" Wilson loops give rise to topological invariants that have been overlooked. We propose three realistic experimental implementations of this topological behavior that can be immediately tested. Our work opens a venue for the expansion of the classification of topological phases of matter.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 31 条
[1]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[2]   Berry-phase description of topological crystalline insulators [J].
Alexandradinata, A. ;
Bernevig, B. Andrei .
PHYSICAL REVIEW B, 2016, 93 (20)
[3]   Topological Insulators from Group Cohomology [J].
Alexandradinata, A. ;
Wang, Zhijun ;
Bernevig, B. Andrei .
PHYSICAL REVIEW X, 2016, 6 (02)
[4]   Wilson-loop characterization of inversion-symmetric topological insulators [J].
Alexandradinata, A. ;
Dai, Xi ;
Bernevig, B. Andrei .
PHYSICAL REVIEW B, 2014, 89 (15)
[5]   Electric Polarization in a Chern Insulator [J].
Coh, Sinisa ;
Vanderbilt, David .
PHYSICAL REVIEW LETTERS, 2009, 102 (10)
[6]   Magnetoelectric Polarizability and Axion Electrodynamics in Crystalline Insulators [J].
Essin, Andrew M. ;
Moore, Joel E. ;
Vanderbilt, David .
PHYSICAL REVIEW LETTERS, 2009, 102 (14)
[7]   Model Characterization of Gapless Edge Modes of Topological Insulators Using Intermediate Brillouin-Zone Functions [J].
Fidkowski, Lukasz ;
Jackson, T. S. ;
Klich, Israel .
PHYSICAL REVIEW LETTERS, 2011, 107 (03)
[8]   Atom-optics approach to studying transport phenomena [J].
Gadway, Bryce .
PHYSICAL REVIEW A, 2015, 92 (04)
[10]   Inversion-symmetric topological insulators [J].
Hughes, Taylor L. ;
Prodan, Emil ;
Bernevig, B. Andrei .
PHYSICAL REVIEW B, 2011, 83 (24)