SSformer: A Lightweight Transformer for Semantic Segmentation

被引:23
|
作者
Shi, Wentao [1 ]
Xu, Jing [1 ]
Gao, Pan [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Peoples R China
来源
2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP) | 2022年
关键词
Image Segmentation; Transformer; Multilayer perceptron; Lightweight model;
D O I
10.1109/MMSP55362.2022.9949177
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
It is well believed that Transformer performs better in semantic segmentation compared to convolutional neural networks. Nevertheless, the original Vision Transformer [2] may lack of inductive biases of local neighborhoods and possess a high time complexity. Recently, Swin Transformer [3] sets a new record in various vision tasks by using hierarchical architecture and shifted windows while being more efficient. However, as Swin Transformer is specifically designed for image classification, it may achieve suboptimal performance on dense prediction-based segmentation task. Further, simply combing Swin Transformer with existing methods would lead to the boost of model size and parameters for the final segmentation model. In this paper, we rethink the Swin Transformer for semantic segmentation, and design a lightweight yet effective transformer model, called SSformer. In this model, considering the inherent hierarchical design of Swin Transformer, we propose a decoder to aggregate information from different layers, thus obtaining both local and global attentions. Experimental results show the proposed SSformer yields comparable mIoU performance with state-of-the-art models, while maintaining a smaller model size and lower compute. Source code and pretrained models are available at: https://github.com/shiwt03/SSformer
引用
收藏
页数:5
相关论文
共 50 条
  • [1] LNFormer: Lightweight Design for Nighttime Semantic Segmentation With Transformer
    Wei, Longsheng
    Liao, Yuhang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [2] Lightweight Real-Time Semantic Segmentation Network With Efficient Transformer and CNN
    Xu, Guoan
    Li, Juncheng
    Gao, Guangwei
    Lu, Huimin
    Yang, Jian
    Yue, Dong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (12) : 15897 - 15906
  • [3] Tunnel crack segmentation based on lightweight Transformer
    Kuang, Xianyan
    Xu, Yaoming
    Lei, Hui
    Cheng, Fujun
    Huan, Xianglan
    Journal of Railway Science and Engineering, 2024, 21 (08) : 3421 - 3433
  • [4] MMSFormer: Multimodal Transformer for Material and Semantic Segmentation
    Reza, Md Kaykobad
    Prater-Bennette, Ashley
    Asif, M. Salman
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 : 599 - 610
  • [5] TrSeg: Transformer for semantic segmentation
    Jin, Youngsaeng
    Han, David
    Ko, Hanseok
    PATTERN RECOGNITION LETTERS, 2021, 148 : 29 - 35
  • [6] Semantic segmentation of terrace image regions based on lightweight CNN-Transformer hybrid networks
    Liu X.
    Yi S.
    Li L.
    Cheng X.
    Wang C.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (13): : 171 - 181
  • [7] SARFormer: Segmenting Anything Guided Transformer for semantic segmentation
    Zhang, Lixin
    Huang, Wenteng
    Fan, Bin
    NEUROCOMPUTING, 2025, 635
  • [8] Pyramid Fusion Transformer for Semantic Segmentation
    Qin, Zipeng
    Liu, Jianbo
    Zhang, Xiaolin
    Tian, Maoqing
    Zhou, Aojun
    Yi, Shuai
    Li, Hongsheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9630 - 9643
  • [9] TransRVNet: LiDAR Semantic Segmentation With Transformer
    Cheng, Hui-Xian
    Han, Xian-Feng
    Xiao, Guo-Qiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) : 5895 - 5907
  • [10] Light4Mars: A lightweight transformer model for semantic segmentation on unstructured environment like Mars
    Xiong, Yonggang
    Xiao, Xueming
    Yao, Meibao
    Cui, Hutao
    Fu, Yuegang
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 214 : 167 - 178