A patchy theoretical model for the transmission dynamics of SARS-Cov-2 with optimal control

被引:2
|
作者
Mhlanga, A. [1 ]
Mupedza, T., V [2 ]
机构
[1] Indiana Univ, Dept Epidemiol & Biostat, Sch Publ Hlth, Bloomington, IN USA
[2] Univ Zimbabwe, Dept Math, Box MP 167, Harare, Zimbabwe
关键词
COVID-19; CHEMOTHERAPY;
D O I
10.1038/s41598-022-21553-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Short-term human movements play a major part in the transmission and control of COVID-19, within and between countries. Such movements are necessary to be included in mathematical models that aim to assist in understanding the transmission dynamics of COVID-19. A two-patch basic mathematical model for COVID-19 was developed and analyzed, incorporating short-term human mobility. Here, we modeled the human mobility that depended on its epidemiological status, by the Lagrangian approach. A sharp threshold for disease dynamics known as the reproduction number was computed. Particularly, we portrayed that when the disease threshold is less than unity, the disease dies out and the disease persists when the reproduction number is greater than unity. Optimal control theory was also applied to the proposed model, with the aim of investigating the cost-effectiveness strategy. The findings were further investigated through the usage of the results from the cost objective functional, the average cost-effectiveness ratio (ACER), and then the infection averted ratio (IAR).
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Intrauterine Transmission of SARS-CoV-2
    Schueda Stonoga, Emanuele Therezinha
    Lanzoni, Laura de Almeida
    Rebutini, Patricia Zadorosnei
    Permegiani de Oliveira, Andre Luiz
    Chiste, Jullie Anne
    Fugaca, Cyllian Arias
    Marani Pra, Daniele Margarita
    Percicote, Ana Paula
    Rossoni, Andrea
    Nogueira, Meri Bordignon
    de Noronha, Lucia
    Raboni, Sonia Mara
    EMERGING INFECTIOUS DISEASES, 2021, 27 (02) : 638 - 641
  • [32] Transmission and prevention of SARS-CoV-2
    Wang, Zhongyi
    Fu, Yingying
    Guo, Zhendong
    Li, Jiaming
    Li, Jingjing
    Cheng, Hongliang
    Lu, Bing
    Sun, Qiang
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2020, 48 (05) : 2307 - 2316
  • [33] Transmission routes of SARS-CoV-2
    Patel, Jay
    JOURNAL OF DENTAL SCIENCES, 2020, 15 (04) : 550 - 550
  • [34] Airborne transmission of SARS-CoV-2
    Prather, Kimberly A.
    Marr, Linsey C.
    Schooley, Robert T.
    McDiarmid, Melissa A.
    Wilson, Mary E.
    Milton, Donald K.
    SCIENCE, 2020, 370 (6514) : 303 - 304
  • [35] Transmission of SARS-CoV-2 RESPONSE
    Meyerowitz, Eric A.
    Richterman, Aaron
    Gandhi, Rajesh T.
    Sax, Paul E.
    ANNALS OF INTERNAL MEDICINE, 2021, 174 (07) : 1037 - 1037
  • [36] Transmission of SARS-CoV-2 by Children
    Merckx, Joanna
    Labrecque, Jeremy A.
    Kaufman, Jay S.
    DEUTSCHES ARZTEBLATT INTERNATIONAL, 2020, 117 (33-34): : 553 - +
  • [37] Routes of transmission of SARS-CoV-2
    Gupta, Harish
    Gautam, Medhavi
    Kumar, Satish
    Kumar, Amit
    JOURNAL OF FAMILY MEDICINE AND PRIMARY CARE, 2022, 11 (11) : 7493 - 7494
  • [38] Household Transmission of SARS-CoV-2
    Metlay, Joshua P.
    Haas, Jennifer S.
    Soltoff, Alexander E.
    Armstrong, Katrina A.
    JAMA NETWORK OPEN, 2021, 4 (02)
  • [39] Indoor transmission of SARS-CoV-2
    Qian, Hua
    Miao, Te
    Liu, Li
    Zheng, Xiaohong
    Luo, Danting
    Li, Yuguo
    INDOOR AIR, 2021, 31 (03) : 639 - 645
  • [40] Household transmission of SARS-CoV-2
    Wang, Zhongliang
    Ma, Wanli
    Zheng, Xin
    Wu, Gang
    Zhang, Ruiguang
    JOURNAL OF INFECTION, 2020, 81 (01) : 179 - 182