Enhanced ionic conductivity and thermal shock resistance of MgO stabilized ZrO2 doped with Y2O3

被引:32
作者
Wen, Tianpeng [1 ]
Yuan, Lei [1 ]
Liu, Tao [1 ]
Sun, Qiaoyang [1 ]
Jin, Endong [1 ]
Tian, Chen [1 ]
Yu, Jingkun [1 ,2 ]
机构
[1] Northeastern Univ, Sch Met, Shenyang 110819, Peoples R China
[2] Northeastern Univ, State Key Lab Rolling & Automat, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
MgO stabilized ZrO2; Y2O3; Solid electrolyte; Cyclic thermal shock; Ionic conductivity; Thermal shock resistance; ELECTROCHEMICAL SULFUR SENSOR; MECHANICAL-PROPERTIES; ZIRCONIA ELECTROLYTE; AUXILIARY ELECTRODE; SOLID-ELECTROLYTE; PHASE; SILICON;
D O I
10.1016/j.ceramint.2020.05.038
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The present work focused on the effect of Y2O3 co-doping on the phase composition, microstructure, ionic conductivity and thermal shock resistance of 8 mol% MgO stabilized ZrO2 (Mg-PSZ) electrolyte ceramics for high temperature applications. The addition of Y2O3 could promote the process of monoclinic-to-cubic/tetragonal phase transformation and became the metastable phase at room temperature. Meanwhile, the grain size of Mg-PSZ decreased. It was demonstrated that an appreciable increase in the ionic conductivity and compressive strength occurred on substituting MgO with Y2O3 in the Mg-PSZ electrolyte ceramics across the measured temperature range. Moreover, the Y2O3 addition could restrain the adverse effect of the cyclic thermal shock on the ionic conductivity and compressive strength of Mg-PSZ. The main reason was that the increase of the amount of monoclinic phase caused by cubic/tetragonal-to-monoclinic phase transformation by the cyclic thermal shock was restrained after the Y2O3 addition.
引用
收藏
页码:19835 / 19842
页数:8
相关论文
共 29 条
[1]   Thermal shock parameters [R, R′" and R""] of magnesia-spinel composites [J].
Aksel, C ;
Warren, PD .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2003, 23 (02) :301-308
[2]   STRUCTURE AND IONIC MOBILITY OF ZIRCONIA AT HIGH-TEMPERATURE [J].
ALDEBERT, P ;
TRAVERSE, JP .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1985, 68 (01) :34-40
[3]  
An S.L., 2003, J BAOTOU U IRON STEE, V22, P305
[4]   Mechanical behavior of zirconia/alumina composites [J].
Choi, SR ;
Bansal, NP .
CERAMICS INTERNATIONAL, 2005, 31 (01) :39-46
[5]   Impedance spectroscopy study of the sintering of yttria-stabilized zirconia/magnesia composites [J].
Fonseca, F. C. ;
de Florio, D. Z. ;
Muccillo, R. .
SOLID STATE IONICS, 2009, 180 (11-13) :822-826
[6]   Thermal study of ZrO2 nanoparticles: Effect of heating and cooling cycles on solid-solid transition [J].
Gaglieri, Caroline ;
Alarcon, Rafael T. ;
Machado, Rafael de Godoi ;
Padovini, David S. S. ;
Pontes, Fenelon M. L. ;
Caires, Flavio J. .
THERMOCHIMICA ACTA, 2017, 653 :59-61
[7]   Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria [J].
Guo, X ;
Waser, R .
PROGRESS IN MATERIALS SCIENCE, 2006, 51 (02) :151-210
[8]   Effect of Bi2O3 additives in Sc stabilized zirconia electrolyte on a stability of crystal phase and electrolyte properties [J].
Hirano, M ;
Oda, T ;
Ukai, K ;
Mizutani, Y .
SOLID STATE IONICS, 2003, 158 (3-4) :215-223
[9]   THE POLYMORPHS OF ZIRCONIA - PHASE ABUNDANCE AND CRYSTAL-STRUCTURE BY RIETVELD ANALYSIS OF NEUTRON AND X-RAY-DIFFRACTION DATA [J].
HOWARD, CJ ;
HILL, RJ .
JOURNAL OF MATERIALS SCIENCE, 1991, 26 (01) :127-134
[10]   Structural and electrical characterization of a novel mixed conductor:: CeO2-Sm2O3-ZrO2 solid solution [J].
Huang, W ;
Shuk, P ;
Greenblatt, M ;
Croft, M ;
Chen, F ;
Liu, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (11) :4196-4202