Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes

被引:345
作者
Pouretedal, Hamid Reza [1 ]
Norozi, Abbas [2 ]
Keshavarz, Mohammad Hossein [1 ]
Semnani, Abolfazl [3 ]
机构
[1] Malek Ashtsr Univ Technol, Fac Sci, Shahin Shahr, Iran
[2] Islamic Azad Univ, Dept Chem, Shahreza Branch, Iran
[3] Shahrekord Univ, Fac Sci, Sharekord, Iran
关键词
Photodegradtion; Zinc sulfide; Methylene blue; Safranin; Nanoparticles; PHOTOCATALYTIC DEGRADATION; AZO DYES; METHYL-ORANGE; TIO2; PHOTODEGRADATION; ADSORPTION; OXIDATION; KINETICS; WATER;
D O I
10.1016/j.jhazmat.2008.05.128
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nanoparticles of zinc sulfide as undoped and doped with manganese, nickel and copper were used as photocatalyst in the photodegradation of methylene blue and safranin as color pollutants. Photoreactivity of doped zinc sulfide was varied with dopant, mole fraction of dopant to zinc ion, pH of solution, dosage of photocatalyst and concentration of dye. The characterization of nanoparticles was studied using X-ray powder diffraction (XRD) patterns and UV-vis spectra. The maximum degradation efficiency was obtained in the presence of Zn0.98Mn0.02S, Zn0.94Ni0.06S and Zn0.90Cu0.10S as nanophotocatalyst. The effect of dosage of photocatalyst was studied in the range of 20-250 mg/L. It was seen that 150.0 mg/L of photocatacyst is an optimum value for the dosage of photocatalyst. The most degradation efficiency was obtained in alkaline pH of 11.0 with study of photodegradation in pH amplitude of 2-12. The degradation efficiency was decreased in dye concentrations above of 5.0 mg/L for methylene blue and safranin dyes. In the best conditions, the degradation efficiency was obtained 87.3-95.6 and 85.4-93.2 for methylene blue and safranin, respectively. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:674 / 681
页数:8
相关论文
共 32 条
[1]   Photocatalytic degradation of Azure and Sudan dyes using nano TiO2 [J].
Aarthi, T. ;
Narahari, Prashanthi ;
Madras, Giridhar .
JOURNAL OF HAZARDOUS MATERIALS, 2007, 149 (03) :725-734
[2]   Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV-VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry [J].
Baiocchi, C ;
Brussino, MC ;
Pramauro, E ;
Prevot, AB ;
Palmisano, L ;
Marcì, G .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2002, 214 (02) :247-256
[3]   Photocatalytic degradation of 2-chlorophenol by co-doped TiO2 nanoparticles [J].
Barakat, MA ;
Schaeffer, H ;
Hayes, G ;
Ismat-Shah, S .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 57 (01) :23-30
[4]   Role of nanoparticles in photocatalysis [J].
Beydoun, D. ;
Amal, R. ;
Low, G. ;
McEvoy, S. .
JOURNAL OF NANOPARTICLE RESEARCH, 1999, 1 (04) :439-458
[5]   Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles [J].
Dai, Ke ;
Chen, Hao ;
Peng, Tianyou ;
Ke, Dingning ;
Yi, Huabing .
CHEMOSPHERE, 2007, 69 (09) :1361-1367
[6]   Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters [J].
Daneshvar, N ;
Salari, D ;
Khataee, AR .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2003, 157 (01) :111-116
[7]   Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6 [J].
Fu, HB ;
Pan, CS ;
Yao, WQ ;
Zhu, YF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (47) :22432-22439
[8]   Photochemical treatment of solutions of azo dyes containing TiO2 [J].
Gonçalves, MST ;
Oliveira-Campos, AMF ;
Pinto, EMMS ;
Plasencia, PMS ;
Queiroz, MJRP .
CHEMOSPHERE, 1999, 39 (05) :781-786
[9]  
He Y., 2004, China Particuology, V2, P168, DOI 10.1016/S1672-2515(07)60050-5
[10]   ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS [J].
HOFFMANN, MR ;
MARTIN, ST ;
CHOI, WY ;
BAHNEMANN, DW .
CHEMICAL REVIEWS, 1995, 95 (01) :69-96