共 68 条
Super-Resolution Mapping of Photogenerated Electron and Hole Separation in Single Metal-Semiconductor Nanocatalysts
被引:150
作者:
Ha, Ji Won
Ruberu, T. Purnima A.
Han, Rui
Dong, Bin
Vela, Javier
[1
]
Fang, Ning
机构:
[1] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA
关键词:
PHOTOCATALYTIC HYDROGEN-PRODUCTION;
OXIDATION REACTIONS;
CHARGE SEPARATION;
NANOWIRE ARRAYS;
HOT-ELECTRONS;
CDS;
TIO2;
NANORODS;
LIGHT;
WATER;
D O I:
10.1021/ja409011y
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Metal-semiconductor heterostructures are promising visible light photocatalysts for many chemical reactions. Here, we use high-resolution superlocalization imaging to reveal the nature and photocatalytic properties of the surface reactive sites on single Au-CdS hybrid nanocatalysts. We experimentally reveal two distinct, incident energy-dependent charge separation mechanisms that result in completely opposite photogenerated reactive sites (e(-) and h(+)) and divergent energy flows on the hybrid nanocatalysts. We find that plasmon-induced hot electrons in Au are injected into the conduction band of the CdS semiconductor nanorod. The specifically designed Au-tipped CdS heterostructures with a unique geometry (two Au nanoparticles at both ends of each CdS nanorod) provide more convincing high-resolution single-turnover mapping results and clearly prove the two charge separation mechanisms. Engineering the direction of energy flow at the nanoscale can provide an efficient way to overcome important challenges in photocatalysis, such as controlling catalytic activity and selectivity. These results bear enormous potential impact on the development of better visible light photocatalysts for solar-to-chemical energy conversion.
引用
收藏
页码:1398 / 1408
页数:11
相关论文