K-theory of equivariant quantization

被引:1
作者
Tang, Xiang [1 ]
Yao, Yi-Jun [2 ]
机构
[1] Washington Univ, Dept Math, St Louis, MO 63130 USA
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
K-theory; Strict deformation; CROSSED-PRODUCTS; ALGEBRAS;
D O I
10.1016/j.jfa.2013.10.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using an equivariant version of Connes' Thom isomorphism, we prove that equivariant K-theory is invariant under strict deformation quantization for a compact Lie group action. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:478 / 486
页数:9
相关论文
共 14 条
[1]  
COMBES F, 1984, P LOND MATH SOC, V49, P289
[2]  
CONNES A, 1980, CR ACAD SCI A MATH, V290, P599
[4]   Noncommutative manifolds, the instanton algebra and isospectral deformations [J].
Connes, A ;
Landi, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (01) :141-159
[5]   The structure of crossed products of irrational rotation algebras by finite subgroups of SL2(Z) [J].
Echterhoff, Siegfried ;
Lueck, Wolfgang ;
Phillips, N. Christopher ;
Walters, Samuel .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 639 :173-221
[6]   SYMMETRIZED NONCOMMUTATIVE TORI [J].
FARSI, C ;
WATLING, N .
MATHEMATISCHE ANNALEN, 1993, 296 (04) :739-741
[7]  
Kasparov G. G., 1993, LONDON MATH SOC LECT, V1, P101
[8]  
Kumjian A., 1990, C. R. Math. Rep. Acad. Sci. Canada, V12, P87
[9]   Simplicial cohomology of orbifolds [J].
Moerdijk, I ;
Pronk, DA .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (02) :269-293
[10]  
Phillips N.C., 1989, PITMAN RES NOTES MAT, V178