BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS

被引:58
作者
da Veiga, L. Beirao [1 ]
Cho, D. [1 ,2 ]
Pavarino, L. F. [1 ]
Scacchi, S. [1 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Dongguk Univ, Dept Math, Seoul 100715, South Korea
关键词
Dual-primal methods; BDDC; FETI-DP; scalable preconditioners; Isogeometric Analysis; finite elements; NURBS; SPECTRAL ELEMENT DISCRETIZATIONS; FETI-DP; FINITE-ELEMENTS; DOMAIN DECOMPOSITION; ENERGY MINIMIZATION; DIMENSIONS; NURBS; REFINEMENT; ELASTICITY; APPROXIMATIONS;
D O I
10.1142/S0218202513500048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Balancing Domain Decomposition by Constraints (BDDC) preconditioner for Isogeometric Analysis of scalar elliptic problems is constructed and analyzed by introducing appropriate discrete norms. A main result of this work is the proof that the proposed isogeometric BDDC preconditioner is scalable in the number of subdomains and quasi-optimal in the ratio of subdomain and element sizes. Another main result is the numerical validation of the theoretical convergence rate estimates by carrying out several two- and three-dimensional tests on serial and parallel computers. These numerical experiments also illustrate the preconditioner performance with respect to the polynomial degree and the regularity of the NURBS basis functions, as well as its robustness with respect to discontinuities of the coefficient of the elliptic problem across subdomain boundaries.
引用
收藏
页码:1099 / 1142
页数:44
相关论文
共 45 条
  • [1] [Anonymous], 2006, MATH MOD METH APPL S
  • [2] [Anonymous], 2004, COMPUTATIONAL MATH
  • [3] ISOGEOMETRIC COLLOCATION METHODS
    Auricchio, F.
    Da Veiga, L. Beirao
    Hughes, T. J. R.
    Reali, A.
    Sangalli, G.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (11) : 2075 - 2107
  • [4] The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations
    Auricchio, F.
    da Veiga, L. Beirao
    Lovadina, C.
    Reali, A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 314 - 323
  • [5] Isogeometric fluid-structure interaction: theory, algorithms, and computations
    Bazilevs, Y.
    Calo, V. M.
    Hughes, T. J. R.
    Zhang, Y.
    [J]. COMPUTATIONAL MECHANICS, 2008, 43 (01) : 3 - 37
  • [6] Isogeometric analysis using T-splines
    Bazilevs, Y.
    Calo, V. M.
    Cottrell, J. A.
    Evans, J. A.
    Hughes, T. J. R.
    Lipton, S.
    Scott, M. A.
    Sederberg, T. W.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 229 - 263
  • [7] A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM
    Benson, D. J.
    Bazilevs, Y.
    De Luycker, E.
    Hsu, M. -C.
    Scott, M.
    Hughes, T. J. R.
    Belytschko, T.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (06) : 765 - 785
  • [8] Isogeometric shell analysis: The Reissner-Mindlin shell
    Benson, D. J.
    Bazilevs, Y.
    Hsu, M. C.
    Hughes, T. J. R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 276 - 289
  • [9] BDDC and FETI-DP without matrices or vectors
    Brenner, Susanne C.
    Sung, Li-Yeng
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (08) : 1429 - 1435
  • [10] ISOGEOMETRIC DISCRETE DIFFERENTIAL FORMS IN THREE DIMENSIONS
    Buffa, A.
    Rivas, J.
    Sangalli, G.
    Vazquez, R.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) : 818 - 844