Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification

被引:144
作者
Xu, Zhichen [1 ,2 ]
Chen, Dongjuan [3 ]
Li, Tao [1 ,2 ]
Yan, Jiayu [1 ,4 ]
Zhu, Jiang [1 ,2 ]
He, Ting [1 ,2 ]
Hu, Rui [1 ,2 ]
Li, Ying [1 ,2 ]
Yang, Yunhuang [1 ,2 ]
Liu, Maili [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Magnet Resonance & Atom Mol Phys, Natl Ctr Magnet Resonance Wuhan,Wuhan Natl Lab Op, Wuhan Inst Phys & Math,Innovat Acad Precis Measur, Wuhan 430071, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 10049, Peoples R China
[3] Huazhong Univ Sci & Technol, Maternal & Child Hlth Hosp Hubei Prov, Tongji Med Coll, Dept Lab Med, Wuhan 430070, Peoples R China
[4] China Univ Geosci, Sch Phys Educ, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
DIAGNOSTICS; CAS12A; ASSAY;
D O I
10.1038/s41467-022-34086-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fast, inexpensive, and multiplexed detection of multiple nucleic acids is of great importance to human health, yet it still represents a significant challenge. Herein, we propose a nucleic acid testing platform, named MiCaR, which couples a microfluidic device with CRISPR-Cas12a and multiplex recombinase polymerase amplification. With only one fluorescence probe, MiCaR can simultaneously test up to 30 nucleic acid targets through microfluidic space coding. The detection limit achieves 0.26 attomole, and the multiplexed assay takes only 40 min. We demonstrate the utility of MiCaR by efficiently detecting the nine HPV subtypes targeted by the 9-valent HPV vaccine, showing a sensitivity of 97.8% and specificity of 98.1% in the testing of 100 patient samples at risk for HPV infection. Additionally, we also show the generalizability of our approach by successfully testing eight of the most clinically relevant respiratory viruses. We anticipate this effective, undecorated and versatile platform to be widely used in multiplexed nucleic acid detection.
引用
收藏
页数:14
相关论文
共 54 条
[1]   Massively multiplexed nucleic acid detection with Cas13 [J].
Ackerman, Cheri M. ;
Myhrvold, Cameron ;
Thakku, Sri Gowtham ;
Freije, Catherine A. ;
Metsky, Hayden C. ;
Yang, David K. ;
Ye, Simon H. ;
Boehm, Chloe K. ;
Kosoko-Thoroddsen, Tinna-Solveig F. ;
Kehe, Jared ;
Nguyen, Tien G. ;
Carter, Amber ;
Kulesa, Anthony ;
Barnes, John R. ;
Dugan, Vivien G. ;
Hung, Deborah T. ;
Blainey, Paul C. ;
Sabeti, Pardis C. .
NATURE, 2020, 582 (7811) :277-+
[2]   Massively scaled-up testing for SARS-CoV-2 RNA via next-generation sequencing of pooled and barcoded nasal and saliva samples [J].
Bloom, Joshua S. ;
Sathe, Laila ;
Munugala, Chetan ;
Jones, Eric M. ;
Gasperini, Molly ;
Lubock, Nathan B. ;
Yarza, Fauna ;
Thompson, Erin M. ;
Kovary, Kyle M. ;
Park, Jimin ;
Marquette, Dawn ;
Kay, Stephania ;
Lucas, Mark ;
Love, TreQuan ;
Booeshaghi, A. Sina ;
Brandenberg, Oliver F. ;
Guo, Longhua ;
Boocock, James ;
Hochman, Myles ;
Simpkins, Scott W. ;
Lin, Isabella ;
LaPierre, Nathan ;
Hong, Duke ;
Zhang, Yi ;
Oland, Gabriel ;
Choe, Bianca Judy ;
Chandrasekaran, Sukantha ;
Hilt, Evann E. ;
Butte, Manish J. ;
Damoiseaux, Robert ;
Kravit, Clifford ;
Cooper, Aaron R. ;
Yin, Yi ;
Pachter, Lior ;
Garner, Omai B. ;
Flint, Jonathan ;
Eskin, Eleazar ;
Luo, Chongyuan ;
Kosuri, Sriram ;
Kruglyak, Leonid ;
Arboleda, Valerie A. .
NATURE BIOMEDICAL ENGINEERING, 2021, 5 (07) :657-665
[3]   CRISPR-Cas12-based detection of SARS-CoV-2 [J].
Broughton, James P. ;
Deng, Xianding ;
Yu, Guixia ;
Fasching, Clare L. ;
Servellita, Venice ;
Singh, Jasmeet ;
Miao, Xin ;
Streithorst, Jessica A. ;
Granados, Andrea ;
Sotomayor-Gonzalez, Alicia ;
Zorn, Kelsey ;
Gopez, Allan ;
Hsu, Elaine ;
Gu, Wei ;
Miller, Steve ;
Pan, Chao-Yang ;
Guevara, Hugo ;
Wadford, Debra A. ;
Chen, Janice S. ;
Chiu, Charles Y. .
NATURE BIOTECHNOLOGY, 2020, 38 (07) :870-+
[4]   CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics [J].
Bruch, Richard ;
Baaske, Julia ;
Chatelle, Claire ;
Meirich, Mailin ;
Madlener, Sibylle ;
Weber, Wilfried ;
Dincer, Can ;
Urban, Gerald Anton .
ADVANCED MATERIALS, 2019, 31 (51)
[5]   Assessment of eight nucleic acid amplification technologies for potential use to detect infectious agents in low-resource settings [J].
Cantera, Jason L. ;
White, Heather ;
Diaz, Maureen H. ;
Beall, Shivani G. ;
Winchell, Jonas M. ;
Lillis, Lorraine ;
Kalnoky, Michael ;
Gallarda, James ;
Boyle, David S. .
PLOS ONE, 2019, 14 (04)
[6]   Functional Nucleic Acids for Pathogenic Bacteria Detection [J].
Chang, Dingran ;
Zakaria, Sandy ;
Samani, Sahar Esmaeili ;
Chang, Yangyang ;
Filipe, Carlos D. M. ;
Soleymani, Leyla ;
Brennan, John D. ;
Liu, Meng ;
Li, Yingfu .
ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (18) :3540-3549
[7]   CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J].
Chen, Janice S. ;
Ma, Enbo ;
Harrington, Lucas B. ;
Da Costa, Maria ;
Tian, Xinran ;
Palefsky, Joel M. ;
Doudna, Jennifer A. .
SCIENCE, 2018, 360 (6387) :436-+
[8]   Universal and high-fidelity DNA single nucleotide polymorphism detection based on a CRISPR/Cas12a biochip [J].
Chen, Yong ;
Mei, Yixin ;
Jiang, Xingyu .
CHEMICAL SCIENCE, 2021, 12 (12) :4455-4462
[9]   Reagents-Loaded, Automated Assay that Integrates Recombinase-Aided Amplification and Cas12a Nucleic Acid Detection for a Point-of-Care Test [J].
Chen, Yong ;
Mei, Yixin ;
Zhao, Xiaohui ;
Jiang, Xingyu .
ANALYTICAL CHEMISTRY, 2020, 92 (21) :14846-14852
[10]   Harnessing recombinase polymerase amplification for rapid multi-gene detection of SARS-CoV-2 in resource-limited settings [J].
Cherkaoui, Dounia ;
Huang, Da ;
Miller, Benjamin S. ;
Turbe, Valerian ;
McKendry, Rachel A. .
BIOSENSORS & BIOELECTRONICS, 2021, 189