Local solvability and stability of the inverse problem for the non-self-adjoint Sturm-Liouville operator

被引:7
作者
Bondarenko, Natalia P. [1 ,2 ]
机构
[1] Samara Natl Res Univ, Dept Appl Math & Phys, Moskovskoye Shosse 34, Samara 443086, Russia
[2] Saratov NG Chernyshevskii State Univ, Dept Mech & Math, Astrakhanskaya 83, Saratov 410012, Russia
基金
俄罗斯基础研究基金会;
关键词
Inverse spectral problems; Non-self-adjoint Sturm-Liouville operator; Generalized spectral data; Local solvability; Stability; Method of spectral mappings; Boundary value problem; REGULARITY CRITERION;
D O I
10.1186/s13661-020-01422-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the non-self-adjoint Sturm-Liouville operator on a finite interval. The inverse spectral problem is studied, which consists in recovering this operator from its eigenvalues and generalized weight numbers. We prove local solvability and stability of this inverse problem, relying on the method of spectral mappings. Possible splitting of multiple eigenvalues is taken into account.
引用
收藏
页数:13
相关论文
共 22 条
[1]   On spectra of non-self-adjoint Sturm-Liouville operators [J].
Albeverio, S. ;
Hryniv, R. ;
Mykytyuk, Ya. .
SELECTA MATHEMATICA-NEW SERIES, 2008, 13 (04) :571-599
[2]  
[Anonymous], 1977, OPERATORYI SHTURMA L
[3]   Solvability and coerciveness of multi-point Sturm-Liouville problems with abstract linear functionals [J].
Bai, Yulin ;
Wang, Wanyi ;
Li, Kun .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
[4]   On a local solvability and stability of the inverse transmission eigenvalue problem [J].
Bondarenko, Natalia ;
Buterin, Sergey .
INVERSE PROBLEMS, 2017, 33 (11)
[5]   Solvability and stability of the inverse Sturm-Liouville problem with analytical functions in the boundary condition [J].
Bondarenko, Natalia P. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (11) :7009-7021
[6]   Spectral analysis of the matrix Sturm-Liouville operator [J].
Bondarenko, Natalia P. .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (01)
[7]   Inverse Sturm-Liouville problem with analytical functions in the boundary condition [J].
Bondarenko, Natalia Pavlovna .
OPEN MATHEMATICS, 2020, 18 :512-528
[8]   On inverse spectral problem for non-selfadjoint Sturm-Liouville operator on a finite interval [J].
Buterin, S. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :739-749
[9]  
Buterin S, 2019, ANAL MATH PHYS, V9, P2133, DOI 10.1007/s13324-019-00307-9
[10]   Inverse spectral problems for non-selfadjoint second-order differential operators with Dirichlet boundary conditions [J].
Buterin, Sergey A. ;
Shieh, Chung-Tsun ;
Yurko, Vjacheslav A. .
BOUNDARY VALUE PROBLEMS, 2013,