Local solvability and stability of the inverse problem for the non-self-adjoint Sturm-Liouville operator

被引:6
|
作者
Bondarenko, Natalia P. [1 ,2 ]
机构
[1] Samara Natl Res Univ, Dept Appl Math & Phys, Moskovskoye Shosse 34, Samara 443086, Russia
[2] Saratov NG Chernyshevskii State Univ, Dept Mech & Math, Astrakhanskaya 83, Saratov 410012, Russia
基金
俄罗斯基础研究基金会;
关键词
Inverse spectral problems; Non-self-adjoint Sturm-Liouville operator; Generalized spectral data; Local solvability; Stability; Method of spectral mappings; Boundary value problem; REGULARITY CRITERION;
D O I
10.1186/s13661-020-01422-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the non-self-adjoint Sturm-Liouville operator on a finite interval. The inverse spectral problem is studied, which consists in recovering this operator from its eigenvalues and generalized weight numbers. We prove local solvability and stability of this inverse problem, relying on the method of spectral mappings. Possible splitting of multiple eigenvalues is taken into account.
引用
收藏
页数:13
相关论文
共 50 条