Simple asymmetric exclusion model and lattice paths: bijections and involutions

被引:3
作者
Brak, R. [1 ]
Essam, J. W. [2 ]
机构
[1] Univ Melbourne, Dept Math, Parkville, Vic 3052, Australia
[2] Univ London, Royal Holloway Coll, Dept Math, Egham TW20 0EX, Surrey, England
关键词
STATES;
D O I
10.1088/1751-8113/45/49/494007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the combinatorics of the change of basis of three representations of the stationary state algebra of the two parameter simple asymmetric exclusion process. Each of the representations considered correspond to a different set of weighted lattice paths which, when summed over, give the stationary state probability distribution. We show that all three sets of paths are combinatorially related via sequences of bijections and sign reversing involutions.
引用
收藏
页数:22
相关论文
共 9 条
[1]   Nonequilibrium steady states of matrix-product form: a solver's guide [J].
Blythe, R. A. ;
Evans, M. R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (46) :R333-R441
[2]   Asymmetric exclusion model and weighted lattice paths [J].
Brak, R ;
Essam, JW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (14) :4183-4217
[3]   Nonequilibrium stationary states and equilibrium models with long range interactions [J].
Brak, R ;
de Gier, J ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (15) :4303-4320
[4]   Return polynomials for non-intersecting paths above a surface on the directed square lattice [J].
Brak, R ;
Essam, JW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (49) :10763-10782
[5]  
Corteel S, 2005, FPSAC 2005 P FORM PO, P555
[6]   Tableaux combinatorics for the asymmetric exclusion process [J].
Corteel, Sylvie ;
Williams, Lauren K. .
ADVANCES IN APPLIED MATHEMATICS, 2007, 39 (03) :293-310
[7]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[8]   A combinatorial approach to jumping particles [J].
Duchi, E ;
Schaeffer, G .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 110 (01) :1-29
[9]  
Stanley R. P., 1997, Cambridge Studies in Advanced Mathematics, V49