On the well-posedness for Kadomtsev-Petviashvili-Burgers I equation

被引:6
作者
Darwich, Mohamad [1 ]
机构
[1] Univ Tours, Lab Math & Phys Theor, UMR CNRS 7350, F-37200 Tours, France
关键词
Dispersive PDEs; Bourgain spaces; Strichartz estimates; CAUCHY-PROBLEM; SPACES;
D O I
10.1016/j.jde.2012.05.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove local and global well-posedness in H-s.0(R-2). s > -1/2 for the Cauchy problem associated with the Kadomtsev-Petviashvili-Burgers I equation (KPBI) by working in Bourgain's type spaces. This result is almost sharp if one requires the flow-map to be smooth. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1584 / 1603
页数:20
相关论文
共 50 条
[31]   ON WELL-POSEDNESS OF THE DEGASPERIS-PROCESI EQUATION [J].
Himonas, A. Alexandrou ;
Holliman, Curtis .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (02) :469-488
[32]   Well-posedness results for the short pulse equation [J].
Giuseppe Maria Coclite ;
Lorenzo di Ruvo .
Zeitschrift für angewandte Mathematik und Physik, 2015, 66 :1529-1557
[33]   GLOBAL WELL-POSEDNESS OF THE RELATIVISTIC BOLTZMANN EQUATION [J].
Wang, Yong .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) :5637-5694
[34]   Well-posedness result for the Kuramoto–Velarde equation [J].
Giuseppe Maria Coclite ;
Lorenzo di Ruvo .
Bollettino dell'Unione Matematica Italiana, 2021, 14 :659-679
[35]   WELL-POSEDNESS AND SCATTERING FOR THE GENERALIZED BOUSSINESQ EQUATION [J].
Chen, Jie ;
Guo, Boling ;
Shao, Jie .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (01) :133-161
[36]   Well-posedness of the nonlinear Schrodinger equation on the half-plane [J].
Himonas, A. Alexandrou ;
Mantzavinos, Dionyssios .
NONLINEARITY, 2020, 33 (10) :5567-5609
[37]   Well-posedness results for the short pulse equation [J].
Coclite, Giuseppe Maria ;
di Ruvo, Lorenzo .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04) :1529-1557
[38]   Well-Posedness for the Fifth Order KdV Equation [J].
Kato, Takamori .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2012, 55 (01) :17-53
[39]   Global well-posedness and inviscid limit for the modified Korteweg-de Vries-Burgers equation [J].
Zhang, Hua ;
Han, LiJia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E1708-E1715
[40]   Well-Posedness for the ZK Equation in a Cylinder and on the Background of a KdV Soliton [J].
Linares, Felipe ;
Pastor, Ademir ;
Saut, Jean-Claude .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) :1674-1689