On the well-posedness for Kadomtsev-Petviashvili-Burgers I equation

被引:6
作者
Darwich, Mohamad [1 ]
机构
[1] Univ Tours, Lab Math & Phys Theor, UMR CNRS 7350, F-37200 Tours, France
关键词
Dispersive PDEs; Bourgain spaces; Strichartz estimates; CAUCHY-PROBLEM; SPACES;
D O I
10.1016/j.jde.2012.05.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove local and global well-posedness in H-s.0(R-2). s > -1/2 for the Cauchy problem associated with the Kadomtsev-Petviashvili-Burgers I equation (KPBI) by working in Bourgain's type spaces. This result is almost sharp if one requires the flow-map to be smooth. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1584 / 1603
页数:20
相关论文
共 50 条
[21]   WELL-POSEDNESS FOR THE SUPERCRITICAL GKDV EQUATION [J].
Strunk, Nils .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) :527-542
[22]   Well-posedness for a perturbation of the KdV equation [J].
X. Carvajal ;
L. Esquivel .
Nonlinear Differential Equations and Applications NoDEA, 2019, 26
[23]   Well-posedness for a perturbation of the KdV equation [J].
Carvajal, X. ;
Esquivel, L. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (06)
[24]   Unconditional well-posedness for the Kawahara equation [J].
Geba, Dan-Andrei ;
Lin, Bai .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (02)
[25]   Well-posedness and weak rotation limit for the Ostrovsky equation [J].
Tsugawa, Kotaro .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (12) :3163-3180
[26]   Global Well-Posedness for the Massless Cubic Dirac Equation [J].
Bournaveas, Nikolaos ;
Candy, Timothy .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (22) :6735-6828
[27]   Well-posedness for stochastic Camassa-Holm equation [J].
Chen, Yong ;
Gao, Hongjun ;
Guo, Boling .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (08) :2353-2379
[28]   On the local well-posedness of a bidimensional version Kadomstev-Petviashvili type of the Benjamin-Ono equation [J].
Preciado Lopez, German .
BOLETIN DE MATEMATICAS, 2015, 22 (01) :55-76
[29]   REMARK ON WELL-POSEDNESS AND ILL-POSEDNESS FOR THE KDV EQUATION [J].
Kato, Takamori .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
[30]   Well-posedness for the nonlocal nonlinear Schrodinger equation [J].
Peres de Moura, Roger .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) :1254-1267