A critical role of TRPM2 in neuronal cell death hy hydrogen peroxide

被引:176
作者
Kaneko, Shuji [1 ]
Kawakami, Seiko
Hara, Yuji
Wakamori, Minoru
Itoh, Etsuko
Minami, Toshiyuki
Takada, Yuki
Kume, Toshiaki
Katsuki, Hiroshi
Mori, Yasuo
Akaike, Akinori
机构
[1] Kyoto Univ, Grad Sch Pharmaceut Sci, Dept Mol Pharmacol, Sakyo Ku, Kyoto 6068501, Japan
[2] Kyoto Univ, Grad Sch Pharmaceut Sci, Dept Pharmacol, Sakyo Ku, Kyoto 6068501, Japan
[3] Kyoto Univ, Grad Sch Engn, Mol Biol Lab, Nishikyo Ku, Kyoto 6158510, Japan
关键词
ADP-ribose; cation channel; calcium homeostasis; cerebral cortex; TRP channel;
D O I
10.1254/jphs.FP0060128
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A brief exposure to hydrogen peroxide (H2O2) induces severe deterioration of primary cultured neurons in vitro. We have investigated a link between the H2O2-induced neuronal death and Ca2+-permeable TRPM2 channels regulated by ADP-ribose (ADPR). In cultured cerebral cortical neurons from fetal rat, TRPM2 proteins were detected at cell bodies and neurite extensions. Application of H2O2 to the cultured neurons elicited an increase in intracellular Ca2+ concentration ([Ca2+](i)) caused by Ca2+ influx and the Ca2+-dependent neuronal death in a similar concentration range. Molecular cloning of TRPM2 cDNA from rat brain revealed several differences in amino acid sequences within the Nudix box region as compared with those of human and mouse TRPM2. ADPR-induced current responses, H2O2-induced Ca2+ influx, and H2O2-induced cell death were induced in human embryonic kidney cells heterologously expressing rat TRPM2. Treatment of cultured neurons with small interfering RNA against rat TRPM2, which efficiently suppressed immunoreactive TRPM2 content and the H2O2-induced Ca2+ influx, significantly inhibited H2O2-induced neuronal death. These results suggest that TRPM2 plays a pivotal role in H2O2-induced neuronal death as redox-sensitive Ca2+-permeable channels expressed in neurons.
引用
收藏
页码:66 / 76
页数:11
相关论文
共 35 条
[1]   A key role for TRPM7 channels in anoxic neuronal death [J].
Aarts, M ;
Iihara, K ;
Wei, WL ;
Xiong, ZG ;
Arundine, M ;
Cerwinski, W ;
MacDonald, JF ;
Tymianski, M .
CELL, 2003, 115 (07) :863-877
[2]   β-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase [J].
Abramov, AY ;
Canevari, L ;
Duchen, MR .
JOURNAL OF NEUROSCIENCE, 2004, 24 (02) :565-575
[3]   PROSTAGLANDIN E(2) PROTECTS CULTURED CORTICAL-NEURONS AGAINST N-METHYL-D-ASPARTATE RECEPTOR-MEDIATED GLUTAMATE CYTOTOXICITY [J].
AKAIKE, A ;
KANEKO, S ;
TAMURA, Y ;
NAKATA, N ;
SHIOMI, H ;
USHIKUBI, F ;
NARUMIYA, S .
BRAIN RESEARCH, 1994, 663 (02) :237-243
[4]   Mechanisms underlying hypoxia-induced neuronal apoptosis [J].
Banasiak, KJ ;
Xia, Y ;
Haddad, GG .
PROGRESS IN NEUROBIOLOGY, 2000, 62 (03) :215-249
[5]   Production of reactive oxygen species by mitochondria - Central role of complex III [J].
Chen, Q ;
Vazquez, EJ ;
Moghaddas, S ;
Hoppel, CL ;
Lesnefsky, EJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (38) :36027-36031
[6]   Poly(ADP-ribose) polymerase inhibition prevents both apoptotic-like delayed neuronal death and necrosis after H2O2 injury [J].
Cole, KK ;
Perez-Polo, JR .
JOURNAL OF NEUROCHEMISTRY, 2002, 82 (01) :19-29
[7]  
DUBINSKY JM, 1995, J NEUROSCI, V15, P7071
[8]   TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase [J].
Fonfria, E ;
Marshall, ICB ;
Benham, CD ;
Boyfield, I ;
Brown, JD ;
Hill, K ;
Hughes, JP ;
Skaper, SD ;
McNulty, S .
BRITISH JOURNAL OF PHARMACOLOGY, 2004, 143 (01) :186-192
[9]   LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death [J].
Hara, Y ;
Wakamori, M ;
Ishii, M ;
Maeno, E ;
Nishida, M ;
Yoshida, T ;
Yamada, H ;
Shimizu, S ;
Mori, E ;
Kudoh, J ;
Shimizu, N ;
Kurose, H ;
Okada, Y ;
Imoto, K ;
Mori, Y .
MOLECULAR CELL, 2002, 9 (01) :163-173
[10]   Cyclic ADP-ribose as a potential second messenger for neuronal Ca2+ signaling [J].
Higashida, H ;
Hashii, M ;
Yokoyama, S ;
Hoshi, N ;
Asai, K ;
Kato, T .
JOURNAL OF NEUROCHEMISTRY, 2001, 76 (02) :321-331