Slow epidemic extinction in populations with heterogeneous infection rates

被引:43
作者
Buono, C. [1 ,2 ]
Vazquez, F. [3 ,4 ]
Macri, P. A. [1 ,2 ]
Braunstein, L. A. [1 ,2 ,5 ]
机构
[1] Inst Invest Fis Mar del Plata UNMdP CONICET, RA-7600 Mar Del Plata, Argentina
[2] Univ Nacl Mar del Plata, Dept Fis FCEyN, RA-7600 Mar Del Plata, Argentina
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[4] Inst Fis Liquidos & Sistemas Biol UNLP CONICET, RA-1900 La Plata, Argentina
[5] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
关键词
SIMULATION;
D O I
10.1103/PhysRevE.88.022813
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We explore how heterogeneity in the intensity of interactions between people affects epidemic spreading. For that, we study the susceptible-infected-susceptible model on a complex network, where a link connecting individuals i and j is endowed with an infection rate beta(ij) = lambda w(ij) proportional to the intensity of their contact w(ij), with a distribution P(w(ij)) taken from face-to-face experiments analyzed in Cattuto et al. [PLoS ONE 5, e11596 (2010)]. We find an extremely slow decay of the fraction of infected individuals, for a wide range of the control parameter lambda. Using a distribution of width a we identify two large regions in the a-lambda space with anomalous behaviors, which are reminiscent of rare region effects (Griffiths phases) found in models with quenched disorder. We show that the slow approach to extinction is caused by isolated small groups of highly interacting individuals, which keep epidemics alive for very long times. A mean-field approximation and a percolation approach capture with very good accuracy the absorbing-active transition line for weak (small a) and strong (large a) disorder, respectively.
引用
收藏
页数:5
相关论文
共 24 条
[1]  
[Anonymous], EPJ WEB C
[2]  
Bailey N. T. J., 1975, The Mathematical Theory of Infectious Diseases and Its Applications, V2nd
[3]  
Braunstein LA, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.056128
[4]   Optimal paths in disordered complex networks [J].
Braunstein, LA ;
Buldyrev, SV ;
Cohen, R ;
Havlin, S ;
Stanley, HE .
PHYSICAL REVIEW LETTERS, 2003, 91 (16)
[5]   Crossover from weak to strong disorder regime in the duration of epidemics [J].
Buono, C. ;
Lagorio, C. ;
Macri, P. A. ;
Braunstein, L. A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (16) :4181-4185
[6]   Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks [J].
Cattuto, Ciro ;
Van den Broeck, Wouter ;
Barrat, Alain ;
Colizza, Vittoria ;
Pinton, Jean-Francois ;
Vespignani, Alessandro .
PLOS ONE, 2010, 5 (07)
[7]  
Erdos P., 1959, J PHYS A, V6, P290
[8]   Measures of sexual partnerships: Lengths, gaps, overlaps, and sexually transmitted infection [J].
Foxman, B ;
Newman, M ;
Percha, B ;
Holmes, KK ;
Aral, SO .
SEXUALLY TRANSMITTED DISEASES, 2006, 33 (04) :209-214
[9]   Worldwide spreading of economic crisis [J].
Garas, Antonios ;
Argyrakis, Panos ;
Rozenblat, Celine ;
Tomassini, Marco ;
Havlin, Shlomo .
NEW JOURNAL OF PHYSICS, 2010, 12
[10]   What's in a crowd? Analysis of face-to-face behavioral networks [J].
Isella, Lorenzo ;
Stehle, Juliette ;
Barrat, Alain ;
Cattuto, Ciro ;
Pinton, Jean-Francois ;
Van den Broeck, Wouter .
JOURNAL OF THEORETICAL BIOLOGY, 2011, 271 (01) :166-180