An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds

被引:21
作者
Bento, G. C. [1 ]
da Cruz Neto, J. X. [2 ]
Santos, P. S. M. [2 ]
机构
[1] Univ Fed Goias, Goiania, Go, Brazil
[2] Univ Fed Piaui, Teresina, Brazil
关键词
Steepest descent; Pareto optimality; Multicriteria optimization; Quasi-Fejer convergence; Quasi-convexity; Riemannian manifolds; PROJECTED GRADIENT-METHOD; QUASI-CONVEX FUNCTIONS; VECTOR; CONVERGENCE; MONOTONE;
D O I
10.1007/s10957-013-0305-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we present an inexact version of the steepest descent method with Armijo's rule for multicriteria optimization in the Riemannian context given in Bento et al. (J. Optim. Theory Appl., 154: 88-107, 2012). Under mild assumptions on the multicriteria function, we prove that each accumulation point (if any) satisfies first-order necessary conditions for Pareto optimality. Moreover, assuming that the multicriteria function is quasi-convex and the Riemannian manifold has nonnegative curvature, we show full convergence of any sequence generated by the method to a Pareto critical point.
引用
收藏
页码:108 / 124
页数:17
相关论文
共 29 条
[1]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[2]  
[Anonymous], 1976, Differential Geometry of Curves and Surfaces
[3]   Convergence of the projected gradient method for quasiconvex multiobjective optimization [J].
Bello Cruz, J. Y. ;
Lucambio Perez, L. R. ;
Melo, J. G. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) :5268-5273
[4]  
Bento C. G., 2011, ARXIV11034828
[5]   Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds [J].
Bento, G. C. ;
Ferreira, O. P. ;
Oliveira, P. R. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) :88-107
[6]   Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds [J].
Bento, G. C. ;
Ferreira, O. P. ;
Oliveira, P. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :564-572
[7]   Subgradient Method for Convex Feasibility on Riemannian Manifolds [J].
Bento, Glaydston C. ;
Melo, Jefferson G. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (03) :773-785
[8]   Proximal methods in vector optimization [J].
Bonnel, H ;
Iusem, AN ;
Svaiter, BF .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (04) :953-970
[9]   Hybrid Approximate Proximal Method with Auxiliary Variational Inequality for Vector Optimization [J].
Ceng, L. C. ;
Mordukhovich, B. S. ;
Yao, J. C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (02) :267-303
[10]  
da Cruz Neto J., 1998, BALK J GEOM APPL, V3, P89, DOI DOI 10.1016/J.NEUCOM.2017.02.029