On the minimum length of q-ary linear codes of dimension five

被引:4
作者
Maruta, T [1 ]
机构
[1] AICHI PREFECTURAL WOMENS JR COLL,NAGOYA,AICHI 467,JAPAN
关键词
linear code; the Griesmer bound; minihyper;
D O I
10.1023/A:1004901203236
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n(q)(k, d) be the smallest integer n for which there exists a linear code of length n, dimension Ic and minimum Hamming distance d over the Galois field GF(q). En this paper we determine n(q) (5, d) for q(4) - q(3) - q - root q - 2 < d less than or equal to q(4) - q(3) + q(2) - q for all q, using a geometric method.
引用
收藏
页码:299 / 304
页数:6
相关论文
共 23 条
[1]  
Bogdanova G. T., 1994, P 4 INT WORKSH ALG C, P41
[2]  
BOUKLIEV I, TABLE MINIMUM DISTAN
[3]  
BOUKLIEV I, OPTIMAL LINEAR CODES
[4]  
BOUKLIEV LG, NEW BOUNDS MINIMUM L
[5]   THE GEOMETRY OF 2-WEIGHT CODES [J].
CALDERBANK, R ;
KANTOR, WM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :97-122
[6]   OPTIMAL LINEAR CODES OVER GF(4) [J].
GREENOUGH, PP ;
HILL, R .
DISCRETE MATHEMATICS, 1994, 125 (1-3) :187-199
[7]  
GRIESMER IH, 1960, IBM J RES DEV, V4, P532
[8]   A CHARACTERIZATION OF SOME [N, K, D Q]-CODES MEETING THE GRIESMER BOUND USING A MINIHYPER IN A FINITE PROJECTIVE GEOMETRY [J].
HAMADA, N .
DISCRETE MATHEMATICS, 1993, 116 (1-3) :229-268
[9]  
Hamada N., 1992, Designs, Codes and Cryptography, V2, P225, DOI 10.1007/BF00141966
[10]  
HAMADA N, 1992, P INT WORKSH ALG COM, P80