Mesoscale modelling of optical turbulence in the atmosphere: the need for ultrahigh vertical grid resolution

被引:14
作者
Basu, S. [1 ]
Osborn, J. [2 ]
He, P. [3 ]
DeMarco, A. W. [4 ]
机构
[1] Delft Univ Technol, Fac Civil Engn & Geosci, NL-2628 CN Delft, Netherlands
[2] Univ Durham, Ctr Adv Instrumentat, Dept Phys, Durham DH1 3LE, England
[3] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[4] US Air Force, Washington, DC 20330 USA
基金
英国科研创新办公室;
关键词
instabilities; turbulence; waves; atmospheric effects; methods: numerical; YAMADA LEVEL-3 MODEL; CLOSURE-MODEL; PREDICTION; REQUIREMENTS; FORECAST; PROFILE; DESIGN; SITES; TOOL;
D O I
10.1093/mnras/staa2010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The high-fidelity modelling of optical turbulence is critical to the design and operation of a new class of emerging highly sophisticated astronomical telescopes and adaptive optics instrumentation. In this study, we perform retrospective simulations of optical turbulence over the Hawaiian islands using a mesoscale model. The simulated results are validated against thermosonde data. We focus on turbulence in the free atmosphere, above the atmospheric boundary layer. The free atmosphere is particularly important for adaptive optics performance and for sky coverage calculations and hence has significant impact on performance optimization and scheduling of observations. We demonstrate that a vertical grid spacing of 100 m or finer is needed to faithfully capture the intrinsic variabilities of observed clear air turbulence. This is a particularly timely study because the next generation of extremely large telescopes are currently under construction and their associated suite of instruments are in the design phase. Knowledge of the expected accuracy of optical turbulence simulations and real-time forecasts will enable the design teams to (i) test and develop instrument designs and (ii) formulate operational procedure.
引用
收藏
页码:2302 / 2308
页数:7
相关论文
共 43 条
[1]   Whole atmospheric-turbulence profiling with generalized scidar [J].
Avila, R ;
Vernin, J ;
Masciadri, E .
APPLIED OPTICS, 1997, 36 (30) :7898-7905
[2]  
Beltramo-Martin O., 2018, P SPIE C SER, V10703, P809, DOI DOI 10.1117/12.2313233
[3]  
Bhattacharyya A, 1943, B CALCUTTA MATH SOC, V35, P99, DOI DOI 10.1038/157869B0
[4]   INVESTIGATION OF SEEING BY MEANS OF AN ATMOSPHERIC MESOSCALE NUMERICAL-SIMULATION [J].
BOUGEAULT, P ;
DEHUI, C ;
FLEURY, B ;
LAURENT, J .
APPLIED OPTICS, 1995, 34 (18) :3481-3488
[5]   Origin of the asymmetry of the wind driven halo observed in high-contrast images [J].
Cantalloube, F. ;
Por, E. H. ;
Dohlen, K. ;
Sauvage, J-F ;
Vigan, A. ;
Kasper, M. ;
Bharmal, N. ;
Henning, T. ;
Brandner, W. ;
Milli, J. ;
Correia, C. ;
Fusco, T. .
ASTRONOMY & ASTROPHYSICS, 2018, 620
[6]  
Cha Sung-Hyuk, 2007, Int. J. Math. Model. Meth. Appl. Sci, V4, P300
[7]   Modeling optical turbulence and seeing over Mauna Kea [J].
Cherubini, T. ;
Businger, S. ;
Lyman, R. ;
Chun, M. .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (04) :1140-1155
[9]   Limitations imposed by optical turbulence profile structure and evolution on tomographic reconstruction for the ELT [J].
Farley, O. J. D. ;
Osborn, J. ;
Morris, T. ;
Fusco, T. ;
Neichel, B. ;
Correia, C. ;
Wilson, R. W. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 494 (02) :2773-2784
[10]   Estimates of Cn2 from Numerical Weather Prediction Model Output and Comparison with Thermosonde Data [J].
Frehlich, Rod ;
Sharman, Robert ;
Vandenberghe, Francois ;
Yu, Wei ;
Liu, Yubao ;
Knievel, Jason ;
Jumper, George .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2010, 49 (08) :1742-1755