CLOSED FORM SOLUTION FOR C2 ORIENTATION INTERPOLATION

被引:0
作者
Volkov, Vasily [1 ]
Li, Ling [1 ]
机构
[1] Curtin Univ Technol, Perth, WA, Australia
来源
COMPUTER VISION AND GRAPHICS (ICCVG 2004) | 2006年 / 32卷
关键词
orientation; quaternions; interpolation; splines; blending functions;
D O I
10.1007/1-4020-4179-9_154
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a simple closed form solution for C-smooth quaternion interpolation problem. In contrast to other methods, our approach does not rely on cubic B-spline blending functions which require solution of nonlinear tridiagonal system. Instead, we propose using d interpolatoiy (cardinal) basis. Our method outperforms all alternatives and, being explicit, is absolutely stable.
引用
收藏
页码:1056 / 1062
页数:7
相关论文
共 13 条
  • [1] Alexa M, 2002, ACM T GRAPHIC, V21, P380, DOI 10.1145/566570.566592
  • [2] [Anonymous], 1984, MATRIX GROUPS
  • [3] Spherical averages and applications to spherical splines and interpolation
    Buss, SR
    Fillmore, JP
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2001, 20 (02): : 95 - 126
  • [4] CURTIS WD, 1993, IEEE VIRTUAL REALITY ANNUAL INTERNATIONAL SYMPOSIUM, P377, DOI 10.1109/VRAIS.1993.380755
  • [5] de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
  • [6] Kang IG, 1999, INT J NUMER METH ENG, V46, P45, DOI 10.1002/(SICI)1097-0207(19990910)46:1<45::AID-NME662>3.3.CO
  • [7] 2-B
  • [8] Kim M.J., 1995, P COMPUTER ANIMATION, P72
  • [9] Myoung-Jun Kim, 1995, Computer Graphics Proceedings. SIGGRAPH 95, P369
  • [10] ν-quaternion splines for the smooth interpolation of orientations
    Nielson, GM
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2004, 10 (02) : 224 - 229