Lattice Point Visibility on Generalized Lines of Sight

被引:10
作者
Goins, Edray H. [1 ]
Harris, Pamela E. [2 ]
Kubik, Bethany [3 ]
Mbirika, Aba [4 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
[2] Williams Coll, Dept Math & Stat, Williamstown, MA 01267 USA
[3] Univ Minnesota Duluth, Dept Math & Stat, Duluth, MN 55812 USA
[4] Univ Wisconsin Eau Claire, Dept Math, Eau Claire, WI 54701 USA
基金
美国国家科学基金会;
关键词
INTEGERS;
D O I
10.1080/00029890.2018.1465760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a fixed we say that a point (r, s) in the integer lattice is b-visible from the origin if it lies on the graph of a power function f(x) = ax(b) with and no other integer lattice point lies on this curve (i.e., line of sight) between (0, 0) and (r, s). We prove that the proportion of b-visible integer lattice points is given by 1/(b + 1), where (s) denotes the Riemann zeta function. We also show that even though the proportion of b-visible lattice points approaches 1 as b approaches infinity, there exist arbitrarily large rectangular arrays of b-invisible lattice points for any fixed b. This work specialized to b = 1 recovers original results from the classical lattice point visibility setting where the lines of sight are given by linear functions with rational slope through the origin.
引用
收藏
页码:593 / 601
页数:9
相关论文
共 27 条
[1]  
Abrams A. D, 1992, COLL MATH J, V23, P47, DOI [10.2307/2686199, DOI 10.2307/2686199]
[2]  
Adhikari S.D, 2003, BONNER MATH SCHRIFTE, V360, P1
[3]   POLYA ORCHARD PROBLEM [J].
ALLEN, TT .
AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (02) :98-104
[4]  
[Anonymous], 2002, A New Kind of Science
[5]  
Apostol T. M., 1976, Introduction to analytic number theory, DOI [10.1007/978-3-662-28579-4, DOI 10.1007/978-3-662-28579-4]
[6]  
Apostol T. M., 2000, CUBO, V2, P157
[7]   Pi, the Primes, Periodicities, and Probability [J].
Casey, Stephen D. ;
Sadler, Brian M. .
AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (07) :594-608
[8]  
Cesaro E., 1881, MATHESIS, V1, P184
[9]  
Cesaro E, 1883, Mathesis, V3, P224
[10]   Visibility of lattice points [J].
Chen, YG ;
Cheng, LF .
ACTA ARITHMETICA, 2003, 107 (03) :203-207