Some results on q-harmonic number sums

被引:1
|
作者
Si, Xin [1 ]
机构
[1] Xiamen Univ Technol, Sch Appl Math, Xiamen, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2018年
关键词
q-harmonic number; q-binomial coefficient; q-polylogarithm function; Q-ZETA FUNCTIONS; EULER SUMS; INTEGRAL-REPRESENTATIONS; Q-ANALOGS; IDENTITIES; POLYNOMIALS; VALUES; SERIES;
D O I
10.1186/s13662-018-1480-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some relations involving q-Euler type sums, q-harmonic numbers and q-polylogarithms. Then, using the relations obtained with the help of q-analog of partial fraction decomposition formula, we develop new closed form representations of sums of q-harmonic numbers and reciprocal q-binomial coefficients. Moreover, we give explicit formulas for several classes of q-harmonic sums in terms of q-polylogarithms and q-harmonic numbers. The given representations are new.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Some Results on q-Multiple Harmonic Sums
    Quan, Junjie
    FILOMAT, 2021, 35 (02) : 667 - 677
  • [2] SOME COMBINATORIAL IDENTITIES INVOLVING q-HARMONIC NUMBERS AND GENERALIZED q-HARMONIC NUMBERS
    Komatsu, Takao
    Ramirez, Jose L.
    Sirvent, Victor F.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (05) : 847 - 858
  • [3] Some q-congruences for homogeneous and quasi-homogeneous multiple q-harmonic sums
    Pilehrood, Kh. Hessami
    Pilehrood, T. Hessami
    Tauraso, R.
    RAMANUJAN JOURNAL, 2017, 43 (01): : 113 - 139
  • [4] Some evaluation of harmonic number sums
    Xu, Ce
    Zhang, Mingyu
    Zhu, Weixia
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (12) : 937 - 955
  • [5] IDENTITY ON q-HARMONIC NUMBER RELATED TO PARTIAL BELL POLYNOMIALS
    Yan, Qinglun
    Liu, Yaqing
    Fan, Xiaona
    UTILITAS MATHEMATICA, 2016, 100 : 193 - 200
  • [6] Congruences with q-harmonic numbers and q-binomial coefficients
    Elkhiri, Laid
    Koparal, Sibel
    Omur, Nese
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02): : 639 - 648
  • [7] Harmonic number sums in closed form
    Sofo, Anthony
    MATHEMATICAL COMMUNICATIONS, 2011, 16 (02) : 335 - 345
  • [8] Congruences with q-generalized Catalan numbers and q-harmonic numbers
    Omur, Nese
    Gur, Zehra Betul
    Koparal, Sibel
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (03): : 712 - 724
  • [9] GENERALIZED HARMONIC NUMBER SUMS AND QUASISYMMETRIC FUNCTIONS
    Chen, Kwang-Wu
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (04) : 1253 - 1275
  • [10] q-HARMONIC SUM IDENTITIES WITH MULTI-BINOMIAL COEFFICIENT
    Yan, Qinglun
    Fan, Xiaona
    ARS COMBINATORIA, 2015, 120 : 213 - 221