Performance Analysis of Deep Convolutional Autoencoders with Different Patch Sizes for Change Detection from Burnt Areas

被引:28
作者
de Bem, Pablo Pozzobon [1 ]
de Carvalho Junior, Osmar Abilio [1 ]
Ferreira de Carvalho, Osmar Luiz [2 ]
Trancoso Gomes, Roberto Arnaldo [1 ]
Guimaraes, Renato Fontes [1 ]
机构
[1] Univ Brasilia, Dept Geog, Campus Univ Darcy Ribeiro,Asa Norte, BR-70910900 Brasilia, DF, Brazil
[2] Univ Brasilia, Dept Engn Elect, Campus Univ Darcy Ribeiro, BR-70910900 Brasilia, DF, Brazil
关键词
deep learning; CNN; classification; fire; multitemporal image; FIRE OCCURRENCE; TIME-SERIES; LAND-COVER; CLASSIFICATION; SEVERITY; PATTERNS; INDEX; RATIO;
D O I
10.3390/rs12162576
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fire is one of the primary sources of damages to natural environments globally. Estimates show that approximately 4 million km(2)of land burns yearly. Studies have shown that such estimates often underestimate the real extent of burnt land, which highlights the need to find better, state-of-the-art methods to detect and classify these areas. This study aimed to analyze the use of deep convolutional Autoencoders in the classification of burnt areas, considering different sample patch sizes. A simple Autoencoder and the U-Net and ResUnet architectures were evaluated. We collected Landsat 8 OLI+ data from three scenes in four consecutive dates to detect the changes specifically in the form of burnt land. The data were sampled according to four different sampling strategies to evaluate possible performance changes related to sampling window sizes. The training stage used two scenes, while the validation stage used the remaining scene. The ground truth change mask was created using the Normalized Burn Ratio (NBR) spectral index through a thresholding approach. The classifications were evaluated according to theF1 index,Kappaindex, and mean Intersection over Union (mIoU) value. Results have shown that the U-Net and ResUnet architectures offered the best classifications with averageF1,Kappa, andmIoUvalues of approximately 0.96, representing excellent classification results. We have also verified that a sampling window size of 256 by 256 pixels offered the best results.
引用
收藏
页数:19
相关论文
共 75 条
[11]   Historical background and current developments for mapping burned area from satellite Earth observation [J].
Chuvieco, Emilio ;
Mouillot, Florent ;
van der Werf, Guido R. ;
San Miguel, Jesus ;
Tanase, Mihai ;
Koutsias, Nikos ;
Garcia, Mariano ;
Yebra, Marta ;
Padilla, Marc ;
Gitas, Ioannis ;
Heil, Angelika ;
Hawbaker, Todd J. ;
Giglio, Louis .
REMOTE SENSING OF ENVIRONMENT, 2019, 225 :45-64
[12]   Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies [J].
Chuvieco, Emilio ;
Lizundia-Loiola, Joshua ;
Lucrecia Pettinari, Maria ;
Ramo, Ruben ;
Padilla, Marc ;
Tansey, Kevin ;
Mouillot, Florent ;
Laurent, Pierre ;
Storm, Thomas ;
Heil, Angelika ;
Plummer, Stephen .
EARTH SYSTEM SCIENCE DATA, 2018, 10 (04) :2015-2031
[13]   Development of a framework for fire risk assessment using remote sensing and geographic information system technologies [J].
Chuvieco, Emilio ;
Aguado, Inmaculada ;
Yebra, Marta ;
Nieto, Hector ;
Salas, Javier ;
Pilar Martin, M. ;
Vilar, Lara ;
Martinez, Javier ;
Martin, Susana ;
Ibarra, Paloma ;
de la Riva, Juan ;
Baeza, Jaime ;
Rodriguez, Francisco ;
Molina, Juan R. ;
Herrera, Miguel A. ;
Zamora, Ricardo .
ECOLOGICAL MODELLING, 2010, 221 (01) :46-58
[14]  
Costafreda-Aumedes S, 2017, INT J WILDLAND FIRE, V26, P983, DOI [10.1071/WF17026, 10.1071/wf17026]
[15]   Spatial Patterns of Fire Recurrence Using Remote Sensing and GIS in the Brazilian Savanna: Serra do Tombador Nature Reserve, Brazil [J].
Daldegan, Gabriel Antunes ;
de Carvalho Junior, Osmar Abilio ;
Guimaraes, Renato Fontes ;
Trancoso Gomes, Roberto Arnaldo ;
Ribeiro, Fernanda de Figueiredo ;
McManus, Concepta .
REMOTE SENSING, 2014, 6 (10) :9873-9894
[16]   Deep Semantic Segmentation of Center Pivot Irrigation Systems from Remotely Sensed Data [J].
de Albuquerque, Anesmar Olino ;
de Carvalho Junior, Osmar Abilio ;
Ferreira de Carvalho, Osmar Luiz ;
de Bem, Pablo Pozzobon ;
Guimaraes Ferreira, Pedro Henrique ;
de Moura, Rebeca dos Santos ;
Silva, Cristiano Rosa ;
Trancoso Gomes, Roberto Arnaldo ;
Guimaraes, Renato Fontes .
REMOTE SENSING, 2020, 12 (13)
[17]   Distribution Patterns of Burned Areas in the Brazilian Biomes: An Analysis Based on Satellite Data for the 2002-2010 Period [J].
de Araujo, Fernando Moreira ;
Ferreira, Laerte Guimaraes ;
Arantes, Arielle Elias .
REMOTE SENSING, 2012, 4 (07) :1929-1946
[18]   Change Detection of Deforestation in the Brazilian Amazon Using Landsat Data and Convolutional Neural Networks [J].
de Bem, Pablo Pozzobon ;
de Carvalho Junior, Osmar Abilio ;
Guimaraes, Renato Fontes ;
Trancoso Gomes, Roberto Arnaldo .
REMOTE SENSING, 2020, 12 (06)
[19]   Predicting wildfire vulnerability using logistic regression and artificial neural networks: a case study in Brazil's Federal District [J].
de Bem, Pablo Pozzobon ;
de Carvalho Junior, Osmar Abilio ;
Trondoli Matricardi, Eraldo Aparecido ;
Guimaraes, Renato Fontes ;
Trancoso Gomes, Roberto Arnaldo .
INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2019, 28 (01) :35-45
[20]   Standardized Time-Series and Interannual Phenological Deviation: New Techniques for Burned-Area Detection Using Long-Term MODIS-NBR Dataset [J].
de Carvalho Junior, Osmar Abilio ;
Guimaraes, Renato Fontes ;
Silva, Cristiano Rosa ;
Trancoso Gomes, Roberto Arnaldo .
REMOTE SENSING, 2015, 7 (06) :6950-6985